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Abstract: Sarcopenia, a progressive disease characterized by a decline in muscle strength, quality,

and mass, affects aging population worldwide, leading to increased morbidity and mortality. Besides

resistance exercise, various nutritional strategies, including omega-3 polyunsaturated fatty acid

(n-3 PUFA) supplementation, have been sought to prevent this condition. This narrative review

summarizes the current evidence on the effect and mechanism of n-3 PUFA on musculoskeletal

health. Despite conflicting evidence, n-3 PUFA is suggested to benefit muscle mass and volume, with

more evident effects with higher supplementation dose (>2 g/day). n-3 PUFA supplementation likely

improves handgrip and quadriceps strength in the elderly. Improved muscle functions, measured

by walking speed and time-up-to-go test, are also observed, especially with longer duration of sup-

plementation (>6 months), although the changes are small and unlikely to be clinically meaningful.

Lastly, n-3 PUFA supplementation may positively affect muscle protein synthesis response to an-

abolic stimuli, alleviating age-related anabolic resistance. Proposed mechanisms by which n-3 PUFA

supplementation improves muscle health include 1. anti-inflammatory properties, 2. augmented

expression of mechanistic target of rapamycin complex 1 (mTORC1) pathway, 3. decreased intracel-

lular protein breakdown, 4. improved mitochondrial biogenesis and function, 5. enhanced amino

acid transport, and 6. modulation of neuromuscular junction activity. In conclusion, n-3 PUFAs

likely improve musculoskeletal health related to sarcopenia, with suggestive effect on muscle mass,

strength, physical performance, and muscle protein synthesis. However, the interpretation of the

findings is limited by the small number of participants, heterogeneity of supplementation regimens,

and different measuring protocols.

Keywords: omega-3 fatty acid; polyunsaturated fatty acid; fish oil; muscle mass; muscle strength;

muscle function; muscle protein synthesis; sarcopenia; ageing; anti-inflammation

1. Introduction

Sarcopenia is an age-related decline in muscle strength, quality, and mass [1]. It
is estimated to affect more than 50 million people globally [2]. Not only does it affect
musculoskeletal function, leading to falls and fractures [3,4], but it also progresses to-
ward the deterioration in physical function [1], cardiovascular diseases [5], chronic res-
piratory diseases [6], cognitive impairment [7], dependence [8] and ultimately, increased
mortality [9]. The condition undoubtedly increases hospitalization and healthcare costs
tremendously with an estimated annual excess cost of £2.5 billion in the United King-
dom [10]. Likewise, the community-dwelling elderly with sarcopenia have more than
2-fold higher direct healthcare costs compared to those without sarcopenia [11]. According
to the European Working Group on Sarcopenia in Older People, sarcopenia is diagnosed
by the presence of low muscle strength (handgrip strength < 27 kg in men, and <16 kg
in women, or chair stand > 15 secs for 5 rises), and reduced muscle quantity (appendicu-
lar skeletal muscle mass < 20 kg in men and <15 kg in women, or appendicular skeletal
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muscle mass/height2 < 7.0 kg/m2 in men or <5.5 kg/m2 in women. The resulting reduc-
tion in physical performance indicates its severity, with severe sarcopenia being defined
by a reduction in gait speed to 0.8 m/s, short physical performance battery (SPPB) ≤ 8,
time-up-and-go test (TUG) > 20 s, and 400-m walk test of ≥6 min [1].

In healthy adults, muscle mass preservation relies on a dynamic balance of muscle pro-
tein synthesis (MPS) and muscle protein breakdown (MPB), which oscillates in a dynamic
equilibrium of a “fasted-loss/fed-gain” cycle [12]. Resistance exercise and adequateintake
of high-quality protein containing essential amino acids, especially leucine, transiently
optimize MPS, while fasting can escalate MPB [13]. MPB is also increased in aging due
to physiologic and hormonal changes, as well as chronic low-grade inflammation and
decreased physical activity that accompany aging [14]. MPB is also increased in vari-
ous chronic muscle wasting diseases, such as cancer, cachexia, chronic kidney disease,
heart failure, and chronic respiratory disease, etc. [15–17]. Moreover, aged muscles are
less sensitive to exercise and nutrient availability which are strong anabolic stimuli. The
resulting anabolic resistance makes the preservation of muscle mass a challenge for the
elderly [14,18]. Without disease-specific interventions, resistance exercise remains the
primary remedy against sarcopenia [19,20]. Nevertheless, considering the elderly’s lim-
ited capacity to engage in physical activities, achieving the required amount of training
can be problematic [21]. Hence, developing treatment strategies to increase or maintain
the quantity and strength of muscles and overcome anabolic resistance may aid in the
perseverance of independence and quality of life. Omega-3 polyunsaturated fatty acid
(n-3 PUFA) supplementation has gained increasing interest due to its anti-inflammatory
properties [22] and biologically plausible mechanism to promote MPS by augmenting
the anabolic response to hyperinsulinemia-hyperaminoacidemia and increasing protein
kinases in related signaling pathways [22–24]. This is supported by promising results from
animals [25,26] as well as clinical studies [27,28].

Comprehensively gathering the data from recent meta-analyses with updated findings
from novel RCTs, this narrative review summarizes key findings on the effect of n-3 PUFA
supplementation on each component of sarcopenia diagnostic criteria. The effect of n-3
PUFA on MPS will also be discussed. Plausible mechanisms by which n-3 PUFA benefits
musculoskeletal health are also delineated. This narrative review will provide up-to-date
and clinically relevant evidence which will aid clinical decision-making and highlight the
gap in current knowledge in this field.

2. n-3 PUFA

n-3 fatty acids comprise a group of various fatty acids containing a double bond
between the third and the fourth carbon atoms from the methyl end [29]. n-3 fatty acids
can be categorized into monounsaturated fatty acid (MUFA) and polyunsaturated fatty
acid (PUFA), depending on the number of double bonds in their chemical structures [30].
These fatty acids can be also classified by the number of carbon atoms, with short chain
containing 6 or fewer carbon atoms, medium chain 12 carbon atoms, long chain fatty acid
14–18 carbon atoms, and very long chain containing 20 or more carbon atoms. Long-chain
n-3 PUFA is the majority of n-3 PUFA available in food [31].

While the human body can synthesize n-3 PUFA from alpha-linolenic acid using
desaturase and elongase enzymes, this endogenous production of n-3 PUFA only accounts
for about 10% of daily PUFA requirement, which is not adequate for the body [32]. Consid-
ered an essential fatty acid, n-3 PUFA are mainly derived from external food sources and
supplementation [33]. Two types of commonly occurring long-chain n-3 PUFAs in food
are eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) [34], both of which can
be found in varying quantities and proportions in marine products. Microalgae oil, a rich
and primary source of both EPA and DHA production, is a suitable source of n-3 PUFA
for vegetarians [35,36]. Some marine invertebrates, such as oysters, squids and octopus
can also synthesize these fatty acids [37,38]. Other marine fishes, such as herring, wild
sardine, and mackerel, that feed on these n-3 PUFA producing algae and molluscs are
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also good sources of dietary n-3 PUFA [31,39]. n-3 PUFA can also be found in the roes of
these oily fishes, such as salmon roe [39]. In spite of its availability in various sources, the
dietary intake of n-3 PUFA was estimated to be 0.17 g per day, which only equates to about
10–15% of the recommended daily intake in adults over 50 years old [40]. Hence, products
containing fish oil, cod liver oil, tuna oil, krill oil, and algal oil, are often used as n-3 PUFA
supplementations [31].

n-3 PUFAS have been shown to benefit human health in various ways including
metabolic issues [30], cardiovascular health [34], and muscle health [41]. Many of these
benefits are largely attributable to n-3 PUFA’s anti-inflammatory properties [42]. Metabolic
issues are widely known to be associated with inflammation [30]. n-3 PUFA has been
suggested to ameliorate insulin resistance through improved mitochondrial function and
modulation of phospholipid membranes [43]. It is also positively correlated with serum
adiponectin level, exhibiting protective effects in obese individuals in decelerating the pro-
gression of cardiovascular disease and metabolic syndromes [44]. With its cardioprotective
effects through blood lipids modulation, vasodilatory effect, blood pressure and heart rate
modulation, lowered platelet aggregation, and a reduction of pro-inflammatory biomarkers,
n-3 PUFA has been suggested as an intervention for primary and secondary preventions of
cardiovascular disease [34,44]. There has been growing interest in the beneficial effects of
n-3 PUFA in the prevention and treatment of sarcopenia in the elderly [45], which will be
further discussed in detail.

3. Effect of n-3 PUFA Supplementation on Muscle Mass and Volume

Several meta-analyses suggested the positive effects of n-3 PUFA supplementation
on the preservation of muscle mass. Although the results remain largely inconclusive and
recommendations on the dosage are currently far from clear, dose-dependent effects have
been suggested.

A recent meta-analysis found a small increase in skeletal muscle mass of 0.33 kg after
n-3 PUFA intervention compared with control in the elderly aged 60 years or above [46].
The estimation was pooled from five small studies (n = 103 for n-3 PUFA groups, and n = 99
for control groups) with low heterogeneity. Specifically, the improvement was only found in
participants receiving over 2 g per day of n-3 PUFA with a pooled effect of 0.67 kg, suggest-
ing the dose-effect relationship. However, the findings should be interpreted with caution
as one of the included studies used alpha-linolenic acid supplementation as opposed to
n-3 PUFA [47]. The meta-analysis also included n-3 PUFA targeted diet intervention with
an instructed ratio of n-6 to n-3 PUFA ratio [48,49]. Hence, the real effect of n-3 PUFA
as supplementation was obscured. Furthermore, the subgroup analysis in studies with
over 2 g per day of n-3 PUFA only involved two studies with limited sample sizes [50,51],
one of which was in patients with lung cancer receiving chemotherapy with profoundly
different physiology from the general geriatric population. Still, the positive effects of
n-3 PUFA were corroborated in another meta-analysis which compiled eight RCTs with
406 older participants [52]. The subjects, nonetheless, mainly had significant comorbidities,
for example, cancer [53,54], chronic obstructive pulmonary disease [55,56], and morbid
obesity undergoing surgery [57]. These patients were already subjected to chronic inflam-
mation [58], which probably accounted for the exaggerated effect of n-3 PUFA. Moreover,
the studies differed significantly in the form of n-3 PUFA supplementation, ranging from
fish oils to oral multi-nutritional supplements. The duration varied vastly from 12 days
to four months. One study was performed exclusively during hospitalization [55], and
another did not specify the dose of n-3 PUFA [54]. However, a sensitivity analysis was not
performed to exclude the effects of these methodology discrepancies.

In contrast, Cornish et al. performed a meta-analysis analyzing the effect of n-3
PUFA supplementation on lean body mass reported in 10 RCTs from 433 healthy older
adults [59]. There was no difference between n-3 PUFA supplementation compared to
control regardless of resistance exercise training. The meta-analysis, however, used lean
body mass as opposed to skeletal muscle mass, which is considered a more sensitive and
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accurate indicator of body functional muscle mass [52]. Due to the variability in the study
protocols, a subgroup analysis should also be performed to further explore the effects of
different doses and durations of supplementation.

Lately, Dalle et al. found that neither resistance exercise training alone nor in combina-
tion with n-3 PUFA (410 mg DHA + 540 mg EPA) resulted in a gain in leg muscle volume
and muscle anabolic sensitivity markers in the elderly with osteoarthritis [60]. However,
interleukin-6 (IL-6), an important proinflammatory marker, was decreased, in parallel with
a decreasing trend in p65NF-κB, a pro-inflammatory transcription factor, in participants
receiving n-3 PUFA. The study, nevertheless, had a small sample size consisting of only
23 individuals. More recently, in a larger RCT involving 63 healthy older adults, six months
of 3.9 g daily n-3 PUFA supplementation (300 mg DHA + 675 mg EPA) did not outperform
placebo in increasing the leg lean mass and whole-body amino acid metabolic response
to exercise [61]. Furthermore, mitochondrial respiration, adenosine triphosphate (ATP)
production, and reactive oxygen species (ROS) production remained unchanged. It is
worth noting that both studies had relatively short study periods, considering anabolic
resistance impeding muscle gain in the elderly. In addition, it is unclear whether the
exercise intervention in these studies were sufficient per se to stimulate muscle synthesis in
the elderly.

Overall, n-3 PUFA supplementation may have small effects in improving muscle mass
via anti-inflammation and increasing protein synthesis which will be further discussed [23,62].
Although dose-dependent relationship was suggested, the effects of different durations
of supplementation were inconclusive due to high heterogeneity in research protocol,
dose, duration, and form of supplementation as well as the lack of subgroup analysis.
Nevertheless, since considerable duration is required to yield a detectable increment in
muscle mass, longer duration of treatment should presumably be associated with greater
effect. Greater effects were suggested in the population group with chronic wasting
conditions and prolonged inflammation, such as cancer and chronic respiratory diseases.
This requires further investigations to confirm the effect size in each group of participants,
and to identify factors associated with greater benefit.

4. Effect of n-3 PUFA Supplementation on Muscle Strength

To date, meta-analyses on the n-3 PUFA and muscle strength have yielded conflicting
results due to protocol heterogeneities such as pooling muscle strength measurement
results from different muscles (as opposed to analyzing data from each parameter of muscle
strength individually) or pooling outcomes of different forms of omega-3 supplementation.
Moreover, these meta-analyses did not measure muscle strength as a primary outcome.
Findings from randomized controlled trials are also limited by sample size and the analysis
of outcomes from different supplements.

A recently published meta-analysis compared the effect of n-3 PUFA supplementation
on lower and upper body strength in healthy elderly [59]. Lower body strength ameliorated
after n-3 PUFA supplementation, and so did upper body strength after removing studies
with a high risk of bias. While the number of pooled participants was large, this finding
should be interpreted with caution as the indicators of muscle strength varied across
studies, i.e., isometric torque, isokinetic torque, leg press, and one repetition maximum (1-
RM), handgrip strength and chest press, reflecting different aspects of muscle strength and
recruitment of different muscle fascicles [63–65]. Moreover, each test of muscle strength also
differs in its complexity, which results in a varying degree to which training and familiarity
to the test can affect the strength improvement [60]. Therefore, these parameters might be
too dissimilar to be pooled into one analysis based on rough anatomical regions.

Separately analyzing each parameter of muscle strength, Bird et al. initially reported
no significant effect of n-3 PUFA supplementation on handgrip strength from 14 stud-
ies [52], but later favored n-3 PUFA after removing two outliers which shows nonsignificant
results [66,67]. The studies varied greatly in their duration of intervention, ranging from
26 days [68] to 3 years [69]. A subgroup analysis based on duration would have provided
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a better understanding. Three studies used mixed nutritional supplements containing
n-3 PUFA and thus should be removed in sensitivity analysis [67,70,71]. Another meta-
analysis failed to reveal the benefit of n-3 PUFA on handgrip strength in healthy older
adults [46]. However, it was limited by the low number of included studies (k = 3) and
outcome heterogeneity. One of the studies used mixed oral supplements as opposed to
n-3 PUFA alone [72] and hence should be excluded in the sensitivity analysis. Similarly,
handgrip strength was found to increase significantly with increasing dietary n-3 PUFA in
another meta-analysis [73]. However, the result was pooled from only two studies, one of
which combined calcium, gamma-linoleic acid, and EPA as the supplement, as opposed to
conventional EPA and DHA [74]. Moreover, muscle strength was not the primary outcome
in this meta-analysis.

The effect of n-3 PUFA supplementation on 1-RM maximum chest press pooled from
three studies showed a non-significant negative trend [46]. Again, the analysis included a
study using mixed oral supplements [72], which should otherwise be excluded from the
sensitivity analysis.

Quadriceps maximal voluntary capacity was estimated from 329 participants in
10 studies, mainly involving healthy elderly samples [46]. The analysis revealed a sig-
nificant increase in quadriceps maximal voluntary capacity in favor of n-3 PUFA. On the
contrary, there was no improvement in 1-RM leg strength. Again, the number of included
studies was rather small (k = 2), with one of them using alpha-linoleic acid instead of
n-3 PUFA [47], and another prescribing healthy diet plan, instead of direct n-3 PUFA
supplementation [49]. The analysis, therefore, did not represent the real effect of n-3 PUFA.

More recent trials showed conflicting results. A study in 32 chronic obstructive pul-
monary disease patients randomized to receive n-3 PUFA supplementation
(1400 mg DHA + 2100 mg EPA, or 1000 mg DHA + 1500 mg EPA) or placebo found no
change in handgrip strength after four weeks [75]. However, the trial was limited by a
short follow-up period and a small sample size. The participants had preserved mus-
cle mass, which perhaps veiled the effect of n-3 PUFA. Eight weeks of vibration and
resistance exercise training combined with whey protein and n-3 PUFA supplementa-
tion (1397 mg DHA + 749 mg EPA) significantly raised muscle power during chair rise in
healthy older men but not women [76], presumably due to different gender-based responses
to training and fewer motor units in females [77]. The improvement in muscle strength coin-
cided with increased serum insulin-like growth factor 1 (IGF-1), which stimulates MPS via
mechanistic target of rapamycin complex 1 (mTORC-1) signaling pathway [54,78], and also
a significant reduction in pro-inflammatory cytokines, implying an anti-inflammatory effect
of n-3 PUFA on skeletal muscle health. Longer-term trials, however, revealed no increase in
muscle strength in 107 frail elderly after 24 weeks of supplementation of leucine-enriched
protein with n-3 PUFA (1100 mg DHA + 800 mg EPA) [79].

In conclusion, n-3 PUFA supplementation seems to improve muscle strength as evident
in the meta-analyses, although findings should be treated with caution due to protocol
heterogeneities in the studies included. Moreover, each parameter of muscle strength
may respond differently due to differences in the nature of muscle fascicles. While lower
body muscle strength may also require a combination of vibration, RET, and protein
supplementation, evidence supports the benefit of supplementation on hand grip strength,
which is the main parameter used in both initial screening and diagnosis of sarcopenia.
Moreover, handgrip strength is a strong predictor of patient outcomes, including hospital
length of stay, limitation in activities of daily living, quality of life, and also all-cause
mortality in the elderly. It is also related to the strengths of other body parts. Still, it remains
unclear which intervention is most beneficial for each individual muscle. A comparison
between n-3 and n-3 plus other nutrients will also help to elucidate this. More robust
meta-analyses investigating the effect of dose and duration of n-3 PUFA supplementation
are required.
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5. Effect of n-3 PUFA Supplementation on Physical Performance

Two recently published meta-analyses of RCTs in older individuals revealed that
n-3 PUFA supplementation significantly improved TUG by 0.29 s and 0.30 s respec-
tively [46,59], although the latter was limited by the small number of pooled participants
of only 73 receiving n-3 PUFA and 63 controls. Moreover, both changes, albeit statistically
significant, were arguably too little to be clinically significant.

Walking speed was unaffected by n-3 PUFA supplementation in a meta-analysis of
10 studies in healthy older individuals, regardless of additional exercise intervention, al-
though there was no subgroup analysis based on other parameters such as supplementation
regimen [59]. The findings might be undermined as two of the included studies did not
directly compare pure n-3 PUFA with passive placebo; one used n-3 PUFA plus vitamin
E in the intervention arm [60], and the other used active placebo containing various fatty
acids [80]. Another meta-analysis in older adults revealed similar results. Since the in-
cluded studies had high heterogeneity, a subgroup analysis based on two studies was
performed and found an increase in walking speed when supplementation period was
over six months. However, one of the two studies compared n-3 PUFA enriched multi-
nutritional supplement and placebo, instead of pure n-3 PUFA, which might impact the
effect of n-3 PUFA in an unpredictable way [54].

Only one meta-analysis assessed 30-s sit-to-stand performance pooled from six studies
with 230 participants [59]. The main analysis showed 1.93 s improvement with n-3 PUFA
supplementation. The studies had high heterogeneity, with only one RCT with a high risk
of bias showing a large improvement [81], and the effect was no longer significant when
the study was removed.

Eight weeks of vibration and resistance exercise training with whey protein and n-3
PUFA supplementation (1397 mg DHA + 749 mg EPA) significantly improved gait speed
but not chair rise time [76]. Gait speed difference, however, was very small (0.01 m/s,
p = 0.024), and hardly yielded any clinical importance. A longer period of supplementation
might yield more applicable results. The long-term effect of n-3 PUFA supplementation
in the community-dwelling elderly with low gait speed or limited instrumental activ-
ity of daily living was assessed in a large-multicenter RCT which compared multiple
physical performance parameters across four parallel groups: n-3 PUFA supplementa-
tion (800 mg DHA + 225 mg EPA), n-3 PUFA supplementation with lifestyle intervention,
placebo alone, and lifestyle intervention alone (n = 1680) [69]. Six months of low-dose n-3
PUFA supplementation failed to improve repeated chair stand test, walking speed, SPPB,
and balance. It might be noteworthy that the study was originally designed to investigate
the effect of n-3 PUFA in the prevention of cognitive decline. Similarly, six months of
n-3 PUFA (1100 mg DHA + 800 mg EPA) plus leucine-enriched protein did not result in
any improvement in SPPB, walking speed, TUG, and chair stand test in the elderly with
reduced muscle mass or strength compared to placebo, although the effect of n-3 PUFA
alone was not evaluated [79].

In conclusion, n-3 PUFA fatty acid supplementation improved walking speed and TUG
test in the meta-analyses. Both are important parameters in the assessment of sarcopenia
severity [1]. Gait speed is a quick and easy test to perform in clinics and is also a predictor
of poor quality of life and increased mortality in both community-dwelling and diseased
elderly [82]. Likewise, poor TUG results are associated with frailty and higher mortality in
healthy older adults [83] and those with chronic respiratory diseases [84]. However, the
changes caused by n-3 PUFA supplementation were arguably too small to yield clinical
significance. Some findings suggested that a longer duration of supplementation might
yield more significant results. Pooled results of SPPB, which covers various domains of
physical performance, might be more sensitive and helpful in understanding the effect of
n-3 PUFA supplementation on physical performance.
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6. Effect of n-3 PUFA on MPS

Research on whether n-3 PUFA supplementation enhances MPS and anabolic response
yielded controversial results, and meta-analysis on the topic is still lacking. Interpretations
of available findings are challenging due to various methodological limitations.

While in vivo MPB measurement remains more complicated and invasive, MPS is
commonly measured in research as fractional synthetic rate (FSR) [85]. After being injected
into the bloodstream, isotope-labeled amino acid tracers enter muscle cells, where they are
incorporated into muscle proteins during MPS [86,87]. Two subsequent muscle biopsies
are taken to determine the rate of incorporation of amino acid tracers into muscle protein to
calculate FSR [88] (Figure 1). Alternatively, it is possible to use deuterium-labeled alanine
produced from ingested deuterium-labeled as tracers, enabling a more extended period for
FSR measurement [89].

ff

 

ff

ff

tt

Figure 1. Schematic representation of measurement of fractional synthetic rate (FSR). To measure
muscle protein synthesis (MPS), tracer amino acids can be introduced into the bloodstream through
injection or labeling from ingested deuterated water. These tracer amino acids are taken up by the
intracellular amino acid pool and used for MPS. To calculate FSR, the amount of tracer amino acid
incorporated into muscle protein per unit of time is analyzed in two muscle samples. MPS = muscle
protein synthesis; MPB = muscle protein breakdown. The blue arrows represent the incorporation of
amino acids into the intracellular muscle pool and intracellular protein. The green arrows represent
the release of amino acids of muscle protein and intracellular amino acid pool into the blood stream.

Among the earliest clinical trials on MPS and n-3 PUFA were studies by Smith et al. which
demonstrated that although n-3 PUFA supplementation (1500 mg DHA + 1860 mg EPA) did
not alter the baseline muscle protein FSR compared to placebo, it augmented MPS response
to hyperaminoacidemia-hyperinsulinemia anabolic stimulation as well as increased the
expression of mTORC-1 signaling pathway. This effect was more evident in healthy young
men compared to older individuals (50% vs. 30%) [23,28]. The increase in MPS was
consistent with the increase in mTORC-1 signaling pathway expression. Positive effects
of n-3 PUFA supplementation (2030 mg DHA + 2970 mg EPA) were also demonstrated in
other population groups. n-3 PUFA supplementation increased the myofibrillar protein
FSR in healthy young women before, during, and after leg immobilization compared
to placebo, resulting in a better recovery of muscle disuse atrophy after two weeks of
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immobilization [90]. High dose n-3 PUFA (1400 mg DHA + 2100 mg EPA) in patients with
chronic obstructive pulmonary disease improved anabolic response with approximately
15% increase in net protein synthesis [75]. Short-term effects of both high and low doses n-3
PUFA supplementation (1000 mg DHA + 1500 mg EPA) in reducing protein breakdown were
also demonstrated. Finally, after 4 months of supplementation with n-3 PUFA (1200 mg DHA +
2700 mg EPA), mitochondrial and sarcoplasmic FSR were increased before exercise, while
mitochondrial and myofibrillar FSR increased post-exercise [91]. The increase in MPS was
parallel to the upregulation of genes that promote protein synthesis and protein folding
and assembly, as well as the downregulation of myostatin, which is responsible for MPB,
and other atrophy-related genes. The change in protein metabolism and genetic expression
after exercise might be attributable to the reduction of anabolic resistance mediated by
transcriptional changes and the alteration of anabolic signaling proteins [91,92].

On the contrary, other studies did not reiterate these results. A randomized controlled
trial showed no significant increase in the FSR in healthy young men who had n-3 PUFA
supplementation (900 mg DHA + 3500 mg EPA) compared to the control group having
coconut oil, although the results should be interpreted with caution as the baseline FSR
was not measured or recorded [93]. The lack of significant positive effects was also demon-
strated in the independently living elderly after 6 months of n-3 PUFA supplementation
(1200 mg DHA + 2700 mg EPA) [61]. In another study, 18 weeks of n-3 PUFA supplementa-
tion (600 mg DHA + 2100 mg EPA) contributed to a significant increase in muscle strength
and quality in elderly females in the absence of an increase in MPS [27]. Another RCT failed
to manifest the benefit of n-3 PUFA (1100 mg DHA + 800 mg EPA) and leucine-enriched
protein supplementation, compared to leucine-enriched protein alone or placebo, in increas-
ing MPS [79]. However, MPS was measured in only 40% of the participants. In a cohort
who had hemodialysis with chronic inflammation, 2.9 g of n-3 PUFA supplementation
(2:1 ratio of EPA:DHA), when compared to placebo, mitigated forearm muscle protein
breakdown without significant effect on whole body protein metabolism [94]. Since the
study was conducted in hemodialysis patients with many physiologic disturbances, the
result might not truly represent the general geriatric population.

Overall, n-3 PUFA supplementation may positively affect MPS response to anabolic
stimuli, offering a potential remedy for anabolic resistance. However, existing trials were
mainly limited by the small numbers of participants and the heterogeneity of n-3 PUFA
regimen, including the types of amino acid tracers, the duration between two muscle
biopsies, and the physiologic condition under which muscle biopsies were taken. The lack
of complete evaluation of MPS, including the lack of baseline measurement in one study
also poses challenges in data interpretation. More rigorous trials with consistent outcome
measures are needed to elucidate the relationship between n-3 PUFA and MPS.

7. Mechanism of n-3 PUFA on Skeletal Muscle Health

To date, meta-analysis on the mechanism of n-3 PUFA on skeletal muscle health re-
mains scarce. RCTs in animals and human have suggested different fragments of entwining
mechanisms on how n-3 PUFA can benefit skeletal muscle health and function, which are
1. Reducing inflammation, 2. Increasing MPS through mTORc1 pathway, 3. Decreasing
MPB through ubiquitin-proteasome system (UPS) and autophagy lysosome system (ALS),
4. Improving mitochondrial function, 5. Increasing cellular amino acid transport, and 6.
Optimizing membrane fluidity (Figure 2).

The most important mechanism is probably anti-inflammation [95]. Recently, an
umbrella meta-analysis found reduced serum C-reactive protein (CRP), tumor necrosis
factor α (TNFα), and IL-6 concentrations in healthy and diseased elderly participants
receiving n-3 PUFA supplementation [96–99], with higher heterogeneity among middle-
aged adults [27,66,80]. The anti-inflammatory effect of n-3 PUFA arose from EPA and
DHA’s ability to displace arachidonic acid, a principal substrate for potent inflammatory
mediators [100]. Twelve weeks of n-3 PUFA supplementation increases EPA and DHA
components by approximately three folds in muscle cell membranes, while decreasing n-6
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to n-3 ratios by 3 folds [101]. A higher n-6 to n-3 ratio in plasma was found to be associ-
ated with increased inflammatory markers such as CRP, IL-6, and TNFα [102]. EPA and
DHA are metabolized into eicosanoids with lower inflammatory potency [22]. In addition,
n-3 PUFA lessened cyclooxygenase-2 (COX-2) production via the inhibition of nuclear
factor kappa B (NF-κB) [103] through the activation of peroxisome proliferator-activated
receptor gamma (PPAR-γ) [104,105] and the stimulation of G-protein coupled receptor
GPR120 [22,106]. The consumption of COX inhibitor was previously found to benefit
skeletal muscle function [107], lower the risk of sarcopenia [108], and increase muscle
fiber size in older adults [109]. However, due to its potential side effects, COX inhibitor
was not prescribed for long-term use in the elderly [110]. The inhibition of NF-κB also
reduces downstream stimulation of muscle ring finger-1 (MuRF-1) gene, which encodes for
muscle-specific E3 ubiquitin ligase, the key enzyme of UPS, the main intracellular protein
degradation machinery [65,111]. Furthermore, EPA and DHA are also substrates for pro-
resolution mediators such as resolvins, protectins and maresins [112], which limit leukocyte
trafficking, increase the clearance of inflammatory debris, and reduce inflammatory cy-
tokine production [113]. While both EPA and DHA share anti-inflammatory effects, DHA
has been found to suppress a wider array of inflammatory genes and cytokine responses
compared to EPA in monocytes under chronic inflammation stimulation. However, their
effects are similar in unstimulated conditions [114,115].
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Figure 2. Cellular mechanisms of n-3 PUFA on skeletal muscles. n-3 PUFA displaces n-6 PUFA
on membranes, resulting in less inflammatory mediators production, and produces pro-resolution
mediators. It also reduces cyclooxygenase production through the inhibition of nuclear factor
kappa B (NF-κB). Decreased inflammation leads to decreased muscle protein breakdown. NF-
κB inhibition also suppresses the ubiquitin-proteasome system through the downregulation of
the muscle ring finger-1 (MuRF-1) gene. n-3 PUFA activates the mTORC-1 signaling pathway,
stimulating muscle protein synthesis by phosphorylation of involving protein kinases. n-3 PUFA
increases amino acid transporter expressions, allowing more substrates for protein synthesis. n-
3 PUFA improves mitochondrial function and reduces free radicle production, which leads to
muscle breakdown. mTORC-1 = Mechanistic target of rapamycin complex 1; MuRF-1 = muscle
ring finger-1; NF-κB = Nuclear factor kappa B; n-3 PUFA = omega-3 polyunsaturated fatty acid;
PPAR-γ = peroxisome proliferator-activated receptor gamma.
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Another mechanism by which n-3 PUFA enhances skeletal muscle health is through
protein kinase activation in the mTORC-1 pathway, the key pathway in muscle synthe-
sis [116–118]. n-3 PUFA supplementation elevated focal adhesion kinase (FAK) expres-
sion [119], which in turn, activated the mTORC1 signaling pathway, initiating MPS [120].
Likewise, there was a 30–50% increase in MPS in response to anabolic stimuli along with
a parallel increase of approximately 50% of mTORSer2448 concentrations and its down-
stream product in muscle cells after eight weeks of n-3 PUFA supplementation [23,24].
Microarray analyses from best responders to six months of n-3 PUFA supplementation
showed decreased inhibition of the mTORC-1 signaling pathway compared to participants
receiving a placebo [92].

n-3 PUFA decreases protein breakdown by UPS and ALS [121]. UPS is the major
pathway in cellular protein breakdown, including myofibrillar proteins. The rate-limiting
step of UPS in the muscles is the ubiquitination of two E3 ubiquitin ligases, muscle atrophy
F-box (MAFbx) and MuRF1 [122]. EPA can reduce MuRF1 expression by preventing NF-
κB nuclear binding, and finally suppressing muscle protein degradation [123,124]. DHA
restricted UPS activity through the obstruction of proteasome catalytic sites by excessive
loads of DHA-mediated oxidized proteins [125]. Six months of n-3 PUFA supplementa-
tion in older adults suppressed the expression of ubiquitin-mediated proteolysis from
microarray analysis [92]. ALS is responsible for the degradation of protein complexes and
malfunctioned organelles [121]. DHA was found to decrease the rate of autophagosome
formation, and therefore, slow down ALS [126]. However, ALS operates at a basal rate
during normal physiology, and its role in sarcopenia pathogenesis remains uncertain.

Many authors believe that when compared with DHA, EPA is responsible for improved
muscle protein turnover [45,76]. Incubation with 50 micromolar EPA, but not DHA, has
been shown to increase C2C12 myotubes protein synthesis and decrease protein breakdown
in mice [127]. However, at higher doses (300–700 micromolar), DHA can more effectively
decrease muscle protein breakdown [128]. It is noteworthy that in both studies, the dose is
much higher than the doses typically used in clinical trials [45].

n-3 PUFA improves mitochondrial biogenesis and function by increasing glycolytic
capacity, basal oxidative metabolism, oxygen consumption, total mitochondrial metabolism,
and mitochondrial content in muscle cells [129–131]. An in vivo study showed that n-3
PUFA supplementation increases mitochondrial and peroxisomal density, in addition to
peroxisome enzymes involved in fatty acid oxidation [131]. Older adults receiving n-3
PUFA showed significantly higher expressions of UCP3 and UQCRC1 which are the key
components of the electron transport chain [92]. n-3 PUFA supplementation increases
mitochondrial adenosine diphosphate sensitivity [132], leading to declined ROS production
by 20–25% [133,134]. Reduced ROS emission with n-3 supplementation is in accordance
with a higher rate of mitochondrial and sarcoplasmic protein synthesis [91]. It also decreases
susceptibility to oxidative damage [132], which precipitates MPB [135]. Furthermore, n-
3 PUFA supplementation maintains adenosine diphosphate-stimulated mitochondrial
respiration and mitochondrial protein synthesis during leg immobilization, which would
otherwise decrease during prolonged immobilization [90]. The finding implies the role of
n-3 PUFA in preventing muscle disuse atrophy.

n-3 PUFA might improve cellular amino acid transport. Expression of L-amino acid
transporter (LAT) and sodium-coupled neural amino acid transporter-2 was increased in
pigs fed with diets rich in n-3 PUFA, enabling more substrate for MPS [136]. There was
also a trend toward an increase in LAT-1 expression in young women receiving high dose
n-3 PUFA during two weeks of leg immobilization with a slower decline of muscle mass
compared to placebo (p = 0.06) [90].

Lastly, optimizing membrane fluidity by n-3 PUFA, owing to its ability to incorporate into
phospholipid bilayers of the cell membrane, could possibly influence the membrane’s property
and flexibility, resulting in the modulation of neurotransmitter transmission [101,137,138]. This
mechanism is believed to be attributable to DHA, which is present in higher concentrations
than EPA in neuromuscular tissue [139]. n-3 PUFA supplementation combined with
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strength training was found to increase skeletal muscle activation levels and decrease
electromechanical response time in older women, leading to greater improvement in muscle
strength and functional capacity, thereby enhancing the effect of resistance training [81]. The
benefit of n-3 PUFA on muscle contractility in response to neural stimuli was suspected to
explain muscle strength improvement independent of muscle mass and volume [59,60,81].
Figure 3 demonstrates a conceptual diagram summarizing the effect of n-3 PUFA on
musculoskeletal health.
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Figure 3. Conceptual summary of the mechanism of n-3 PUFA on musculoskeletal health. n-3 PUFA
activates mTORC-1 signaling pathway, by phosphorylation of involving protein kinases. It also
increases the expression amino of acid transporter, allowing more substrates for protein synthesis.
n-3 PUFA improves mitochondrial function by increasing mitochondrial Adenosine diphosphate
(ADP) sensitivity. n-3 PUFA displaces omega-6 fatty acid on membranes, resulting in less production
of inflammatory mediators, and produces pro-resolution mediators, constituting less muscle protein
breakdown. Omega-3 reduces cyclooxygenase-2 (COX-2) expression through the inhibition of nuclear
factor kappa B. n-3 PUFA directly decreases intracellular protein breakdown. Together, they result in
a greater muscle quantity. Lastly, n-3 PUFA modulates neurotransmission, resulting in greater muscle
strength. The ↑ symbol represents an increase, while the ↓ symbol represents a decrease.

8. Gap of Knowledge and Future Research Direction

Various clinical trials have attempted to explore the effect of n-3 PUFA supplemen-
tation on different aspects of musculoskeletal health. However, controversies and a large
gap of knowledge still exist due to the heterogeneity of results which probably stem from
different protocols of supplementation, and additional physical and nutritional interven-
tion given alongside n-3 PUFA. There is a paucity of the data on the comparative effect of
EPA versus DHA on musculoskeletal health and function since most clinical trials used
combined EPA and DHA in varying proportions as their interventions without any trials
directly comparing the effect of pure EPA versus pure DHA. More importantly, the dif-
ference in an individual’s response might lead to greatly varying results, especially when
trials are pooled together.

Since n-3 PUFA is relatively safe and widely accessible, n-3 PUFA supplements might
be a promising and cost-effective strategy for muscle preservation in the elderly. Future
research focusing on how the effect of n-3 PUFA supplementation can be maximized will
provide a more tangible clinical application, i.e., the most effective form and dose of n-
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PUFA, an optimal duration of supplementation, appropriate additional physical training,
factors affecting the response to n-3 PUFA supplementation (i.e., age, gender, baseline
EPA, DHA level), and conditions that will most benefit from the supplementation (healthy
vs. with chronic muscle wasting diseases). The parameters used for the measurement of
the effect of n-3 PUFA on muscles and physical function should be sensitive and reflect
important health outcomes. Larger trials exploring the effect of n-3 PUFA on MPS should
implement more homogeneous protocols of MPS measurement (i.e., the choice of amino
acid tracer, the duration of measurement, and the presence of anabolic stimulation during
measurement). Future rigorous meta-analyses focusing on each parameter of sarcopenia
are needed. Sensitivity analyses and subgroup analyses based on the dose, duration,
and types of n-3 PUFA supplementation, as well as demographic data such as gender
and health status, should be performed to more clearly delineate the effect of n-3 PUFA
supplementation. Meta-regression should also be done to identify the factors associated
with greater benefit.

9. Conclusions

Sarcopenia can lead to various negative health outcomes. The diagnosis of sarcopenia
relies on the reduction in muscle mass and muscle strength, with a decrease in physical
function indicating severe sarcopenia. Compiling the most up-to-date evidence from meta-
analyses and RCTs, this narrative review found the benefits of n-3 PUFA in various aspects
of sarcopenia. n-3 PUFA supplementation provides small benefits in improving muscle
mass with a possible dose-effect relationship. In general, the effect of n-3 PUFA supplemen-
tation on muscle strength was shown to be positive. Nonetheless, each parameter of muscle
strength may respond differently. It also demonstrated pooled benefits on physical function,
in particular walking speed and TUG test. However, the changes were too small to bear
clinical significance. Longer duration of supplementation tends to be more favorable. n-3
PUFA may positively affect MPS response to anabolic stimuli. Mechanisms by which n-3
PUFA supplementation improves muscle health are 1. Anti-inflammation, 2. Increased
expression of mTORC1 pathway, 3. Decreased UPS and ALS, 4. Enhanced mitochondrial
biogenesis and function, 5. Improved amino acid transport, and 6. Improved neuromuscu-
lar junction activity. However, relevant trials differ profoundly in their research protocols,
supplementation regimens, and outcome measurements, resulting in highly heterogeneous
results. Robust meta-analyses with thorough subgroup analysis are required.
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