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kinase 1; IRS1, insulin receptor substrate 1; ASK1, apoptosis signal-regulated kinase 
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zipper 1; Akt, protein kinase B; FAM3A, Family with sequence similarity 3 member 

A; PPAR-α, proliferator-activated receptor alpha; PPAR-γ,  proliferator-activated 

receptor gamma; miRNA, microRNA; FoxO1, forkhead box O1; MASH, metabolic 

dysfunction-associated steatohepatitis; FFAs, free fatty acids; HMGCS2, hydroxy-

3-methylglutaryl-CoA synthase 2; ADAR2, adenosine deaminases acting on RNA 

2; ACC, acetyl-CoA carboxylase; FAS, fatty acid synthase; SCD1, stearoyl-CoA 

desaturase 1; SREBP-1, sterol regulatory element-binding protein 1; FA, fatty acid; 

TG, triglyceride; HSL, hormone-sensitive lipase; ATGL, adipose triglyceride lipase; 

SIRT1, silent information regulator T1; KC, Kupffer cells; NETs, neutrophil 

extracellular traps; GalN, N-galactosamine; LPS, lipopolysaccharide; CPT-1, 

carnitine palmitoyl transferase-1; MCAD, medium-chain acyl-CoA dehydrogenase; 

MAIT, mucosa-associated invariant T cells; IL-6, interleukin-6; IL-1β, interleukin-

1β; TNF-α, tumor necrosis factor-α; MCP-1, monocyte chemoattractant protein-1; 

IL-10, interleukin-10; NK cells, Natural Killer cells; IL-15, Interleukin-15; RAE-1, 

retinoic acid early inducible gene 1; AICAR, AMPK activator 5-aminoimidazole-4-

AC
C
EPTED

D
o

w
n

lo
a

d
e

d
 fro

m
 h

ttp
://jo

u
rn

a
ls

.lw
w

.c
o

m
/h

e
p

 b
y
 B

h
D

M
f5

e
P

H
K

a
v
1

z
E

o
u

m
1

tQ
fN

4
a

+
k
J
L

h
E

Z
g

b
s
IH

o
4

X
M

i0
h

C
y
w

C
X

1
A

W
n

Y
Q

p
/IlQ

rH
D

3
i3

D
0

O
d

R
y
i7

T
v
S

F
l4

C
f3

V
C

4
/O

A
V

p
D

D
a

8
K

K
G

K
V

0
Y

m
y
+

7
8

=
 o

n
 0

6
/0

8
/2

0
2

4



carboxamide ribonucleotide; RCTs, randomized controlled trials; HRQOL, health-

related quality of life; FNDC5, fibronectin type III domain-containing protein 5; 

FBG, fasting blood glucose; HOMA-IR, homeostatic model assessment of insulin 
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CSPH, clinically significant portal hypertension; TIPS, transjugular intrahepatic 
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6MWD, 6-minute walk distance; HCC, hepatocellular carcinoma; TGF-β, 

transforming growth factor-beta; DRP1, dynamin-related protein 1; TME, tumor 

microenvironment; Aβ, amyloid-β peptide; PGC-1α, proliferator-activated receptor 

gamma coactivator 1-alpha; APJ, apelin peptide jejunum; STAT3, signal transducer 

and activator of transcription 3; IGF-1, insulin-like growth factor 1. 

 
 

 
Abstract 

Liver diseases contribute to approximately 2 million deaths each year and account 

for 4% of all deaths globally. Despite various treatment options, the management of 

liver diseases remains challenging. Physical exercise is a promising non-

pharmacological approach to maintain and restore homeostasis and effectively 

prevent and mitigate liver diseases. In this review, we delve into the mechanisms of 

physical exercise in preventing and treating liver diseases, highlighting its effects on 

improving insulin sensitivity, regulating lipid homeostasis, and modulating immune 

function. Additionally, we evaluate the impact of physical exercise on various liver 

diseases, including liver ischemia/reperfusion (I/R) injury, cardiogenic liver disease, 

metabolic dysfunction-associated steatotic liver disease (MASLD), portal 
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hypertension (PH), cirrhosis, and liver cancer. In conclusion, the review underscores 

the effectiveness of physical exercise as a beneficial intervention in combating liver 

diseases[ak1]. 
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Introduction 

Liver diseases have become a major health concern and highly impact young 

individuals, ranking as the 12th leading cause of disability-adjusted life-years 

(DALYs) among those aged 25 to 49(1). MASLD, the most prevalent form of liver 

diseases, impacts approximately 25% of the global adult population(2, 3). The major 

causes of mortality related to liver diseases are cirrhosis and hepatocellular 

carcinoma(4, 5). With a deep understanding of the pathophysiological mechanisms 

of liver diseases, the medical community's choice of therapeutic approaches has been 

evolving(6).  

Due to its beneficial effects on metabolism regulation, physical exercise has been 

extensively validated as an effective strategy in preventing and treating metabolic 

syndrome, including MASLD(7). Additionally, recent studies underscored its 

potential value in managing other liver diseases, such as cirrhosis and hepatocellular 

carcinoma(8, 9). Bed rest was once considered the cornerstone of the treatment of 

most liver diseases, such as viral hepatitis and cirrhosis(10, 11). This approach stems 

from the research that less physical exercise reduces metabolic demands on the liver 

and lowers the risk of complications(12) and that an upright posture further increases 

plasma renin levels(10). However, recent studies revealed the adverse consequences 

of prolonged inactivity, including muscle atrophy(13), deep vein thrombosis(14), 

and elevated risk of fibrosis(15). As a result, the prescription of bed rest has been 

critically reevaluated. Physical exercise is an effective measure for managing 

cirrhosis-related complications, including hepatic encephalopathy and 

sarcopenia(16, 17). Beyond that, regular physical exercise has also been linked to 

the reduced risk of liver cancer(18). Furthermore, studies demonstrated that regular 

exercise not only diminishes the likelihood of MASLD but also elevates the overall 
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quality of life for individuals afflicted with chronic liver diseases and liver 

transplantation(19, 20). Physical exercise also ameliorates systemic metabolic 

disorders like obesity and type 2 diabetes, both of which can exacerbate liver 

injury(21, 22).  

In this review, we summarize the protective roles of physical exercise in liver 

diseases. We discuss physical exercise modalities and how physical exercise 

prevents and manages liver diseases. Furthermore, we delve into physical exercise's 

role in mitigating acute and chronic liver inflammation and its potential in managing 

liver cancer. This exploration underscores the vital role of physical exercise in liver 

diseases and advocates for its incorporation into liver disease prevention and 

management strategies. 

Physical Exercise Modality, Intensity and Duration 

Physical exercise is mainly comprised of aerobic and resistance training, each with 

different benefits and precautions for liver diseases. Aerobic exercise effectively 

reduces body weight, glycosylated hemoglobin A1c, blood pressure, and serum 

cholesterol levels(23-25). However, it can induce fatigue and discomfort, potentially 

leading to poor long-term compliance, especially for individuals with lower 

cardiorespiratory fitness levels(26). Resistance exercise, which entails muscle 

contractions against external resistance to boost muscle strength, bone density, and 

endurance, has been shown to provide significant benefits in addressing 

dyslipidemia, hypertension, and insulin resistance(27, 28), offering metabolic 

advantages with relatively lower energy expenditure; however, limited access to 

appropriate equipment and facilities can pose a barrier to engaging in effective 

resistance exercise.  

No particular liver disease has been exclusively linked to a specific exercise 

modality for treatment or management(29).  A comparative randomized controlled 
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trial investigated the effects of moderate-intensity aerobic exercise versus resistance 

exercise on patients with MASLD, finding both regimens equally effective in 

reducing intrahepatic triglycerides (IHGT) and improving insulin resistance(30). In 

patients with cirrhosis, aerobic exercise enhances cardiopulmonary function and 

overall fitness, while resistance exercise is highly effective against sarcopenia(31). 

Combining these two forms of exercise can significantly improve hepatic 

complications and prognosis(8). 

In mouse models focusing on liver diseases, physical exercise interventions 

primarily involve aerobic exercises such as treadmill running(32), voluntary wheel 

running(33), and swimming(34). Resistance exercise models include 

weightlifting(35), high-intensity interval exercise (HIIT)(36), and ladder 

climbing(37). These exercise models offer valuable insights into the effects of 

physical exercise on liver health, metabolism, and the potential for treating liver 

diseases. Understanding the impacts of different exercise modalities on liver disease 

is crucial for developing effective therapeutic strategies and promoting overall liver 

well-being. 

The intensity of physical exercise is assessed through absolute and relative intensity. 

Absolute intensity is measured in Metabolic Equivalent of Task (MET) units, 

representing the energy expended during the exercise. Moderate-intensity activities 

range from 3 to 5.9 MET, while vigorous-intensity activities are 6 or higher(38). In 

contrast, relative intensity assesses effort to an individual's capacity. Intensity is a 

critical factor when considering physical exercise for patients with liver diseases(39). 

For instance, Keating et al. showed that the minimum effective dose of exercise to 

improve hepatic steatosis was 135 minutes of moderate-intensity aerobic exercise 

per week, and that increasing the intensity of exercise (including HIIT approaches) 

had no additional benefit for hepatic steatosis(40). It is essential to tailor physical 
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exercise considering absolute and relative intensity to maximize benefits based on 

individual fitness levels. 

Determining the appropriate exercise duration is equally important. Our group found 

that liver I/R injury decreased with exercise duration and was lowest after 4 weeks 

of preoperative exercise compared with sedentary mice. However, extended pre-

operative exercise periods beyond 4 weeks up to 16 weeks offered no further hepatic 

protection(32). Moreover, for those in poor physical condition, the recommendation 

is to initiate exercise with 20 minutes sessions and progressively increase the 

duration by 5-10 minutes every 1-2 weeks(41).  

In conclusion, careful selection of physical exercise modality, intensity, and duration 

is essential for effectively managing liver diseases. A personalized physical exercise 

plan tailored to the individual's health needs and capabilities is recommended to 

ensure improved adherence and optimal health outcomes(29, 42). 

The Mechanism of Physical Exercise in Protecting Against Liver Diseases 

Improve Insulin Sensitivity 

Physical exercise effectively improves insulin sensitivity, which is critical to 

regulating glucose and lipid metabolism(43). Insulin resistance is characterized by 

impaired responsiveness to insulin, leading to elevated insulin levels in the liver. 

This promotes MASLD through mechanisms that increase lipids' synthesis and 

accumulation. High levels of insulin resistance are a significant predictor of 

MASLD(44). 

The positive effect of exercise on insulin sensitivity is attributed to its modulation of 

molecular pathways associated with insulin resistance (Table 1). For instance, Wang 

et al. found that treadmill running for 60 minutes per day, 5 days per week for 10 

weeks, significantly improved the function of islet β-cells and effectively reduced 

insulin resistance in mice. These improvements were associated with the activation 
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of the toll-like receptor 4 (TLR-4)-mediated extracellular signal-regulated kinase 

(ERK)/AMP-activated protein kinase (AMPK) signaling pathway, which plays a 

crucial role in regulating insulin sensitivity and glucose metabolism(45). The 

research conducted by Zhang et al. demonstrated that 60 minutes per day, 5 days per 

week for 8 weeks of swimming training effectively improved hepatic insulin 

resistance induced by a high-fat diet (HFD) in male Sprague-Dawley rats through 

TGF-β-activated kinase 1 (TAK1)-dependent signaling. The improvement in insulin 

sensitivity was attributed to multiple factors, including the enhancement of proteins 

ubiquitin-specific protease 4 (USP4), dual-specificity phosphatases 14 (DUSP14) 

and a reduction in the phosphorylation of critical signaling molecules such as TAK1, 

c-Jun N-terminal kinase 1 (JNK1), and insulin receptor substrate 1 (IRS1)(46). 

Furthermore, this beneficial effect was associated with reduced apoptosis signal-

regulated kinase 1 (ASK1) phosphorylation(47). Similarly, studies by Marinho et al. 

and Zhang et al. indicate that an identical regimen of swimming enhances insulin 

signaling through adaptor protein, phosphotyrosine interacting with PH domain and 

leucine zipper 1 (APPL1) / protein kinase B (Akt) signaling pathway and the family 

with sequence similarity 3 member A (FAM3A)/ATP/Akt pathway, respectively(48, 

49). AKT signaling plays a crucial role in insulin sensitivity, and disturbances in 

AKT signaling pathways may result in insulin resistance(50-52). Moreover, Diniz et 

al. have shown that treadmill running for 60 minutes per day, 5 days per week for 8 

weeks, can attenuate the progression of HFD-induced hepatic steatosis and 

inflammation. This improvement is achieved through activating the AMPK-

peroxisome proliferator-activated receptor alpha (PPAR-α) signaling pathway and 

PPAR-gamma (PPAR-γ) signaling pathways, leading to the amelioration of insulin 

resistance in obese mice(53). 

HIIT has been shown to reduce insulin resistance and hepatic glucose production. 

Castaño et al. revealed that HIIT can alter the microRNA (miRNA) profile of 
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circulating exosomes in mice. This alteration leads to increased expression of miR-

133a and miR-133b in plasma, which, in turn, upregulates the insulin-regulating 

transcription factor forkhead box O1 (FoxO1) in the liver, ultimately contributing to 

the attenuation of insulin resistance(54). These findings underscore exercise-induced 

molecular adaptations' significance in alleviating hepatic insulin resistance. 
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Table 1. Molecular pathways involved in the improvement of hepatic insulin 

sensitivity by physical exercise 

Reference 
Exercise 
modeling 

Exercise Intervention Molecular pathways 

Marinho et 

al., 

2013(49) 

Aerobic 
exercise 

Swimming, 60 min per 

day, 5 days per week 

for 8 weeks 

Improved the 

APPL1/TRB3/Akt 

signaling pathway 

Tsuzuki, et 

al., 

2015(52) 

Aerobic 

exercise 

Voluntary wheel 

running for 20 weeks 

Suppressed the iNOS 

expression and S-

nitrosylation of Akt 

Zhang, et 

al., 

2018(48) 

Aerobic 

exercise 

Swimming, 60 min per 

day, 5 days per week 

for 8 weeks 

Reduced the 

NFE2/miR-423-5p and 

increased 

FAM3A/ATP/Akt 

pathway 

Wang, et 

al.,2018(45) 

Aerobic 

exercise 

Treadmill running, 60 

min per day, 5 days per 

week for 10 weeks 

Improved the 

TLR‑4‑mediated 

ERK/AMPK signaling 

pathway 

Zhang, et 

al., 

2019(46) 

Aerobic 
exercise 

Swimming, 60 min per 

day, 5 days per week 

for 8 weeks 

Suppressed hepatic 

TAK1/JNK/IRS1 

signaling 

Castaño, et 

al., 

2020(54) 

Aerobic 
exercise 

Treadmill running, 60 

min per day, 3 days per 

week for 5 weeks 

Increased the miR-

133a, miR-133b and 

FoxO1 
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Diniz, et 

al.,2021(53) 
Aerobic 
exercise 

Treadmill running, 60% 

of maximum speed, 7 

days per week for 8 

weeks 

Improved the AMPK-

PPAR-α/ PPAR-γ 

signaling pathway 

Rodrigues, 

et al., 

2021(51) 

Resistance 
exercise 

20 climbing series per 

day, 5 days per week 

for 3 weeks 

Increased the IRS-1/2 

and AKT tyrosine 

phosphorylation 

Zhang, et 

al., 

2021(47) 

Aerobic 
exercise 

Swimming, 60 min per 

day, 5 days per week 

for 8 weeks 

Decreased the ASK1 

phosphorylation and 

improved 

JNK1/IRS1/Akt 

signaling pathway 

Vieira, et 

al., 

2022(50) 

Aerobic 
exercise 

Treadmill running, 30-

60 min per day, 7 days 

per week for 10 weeks 

Improved the 

IRS1/AKT signaling 

pathway 
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Regulate Lipid Homeostasis  

The liver is vital in regulating lipid homeostasis and is the primary organ for fatty 

acid metabolism(55). Excess glucose ingested is converted into fatty acids by 

hepatocytes through a series of enzymatic reactions collectively known as de novo 

lipogenesis(56). These newly synthesized fatty acids can be stored in the liver as 

triglycerides or transported to adipose tissue for long-term storage. Failure to 

transport or utilize these fatty acids promptly can result in their accumulation in the 

liver, leading to the development of metabolic dysfunction-associated steatohepatitis 

(MASH). 

Physical exercise involves the complex physiological process significantly affecting 

lipogenesis and lipolysis (Figure 1). Increasing energy expenditure is one of the 

primary mechanisms through which exercise influences this process(57). During 

aerobic exercise, lipase enzymes in the body are activated, leading to the hydrolysis 

of triglycerides into glycerol and free fatty acids (FFAs)(58). Hormones, such as 

epinephrine and norepinephrine, further stimulate lipolysis(58). This process 

increases the release of FFAs into the bloodstream, serving as an energy source. 

Hepatic lipolysis is a complex metabolic process that relies on several critical 

regulatory enzymes to control the release of fatty acids from stored triglycerides. 

Additionally, fatty acid oxidation and autophagy are involved in this intricate 

cellular mechanism(59). Physical exercise can decrease de novo lipogenesis and 

increase the fatty acid β-oxidation and autophagy. In addition, exercise can further 

regulate lipid metabolism by enhancing insulin sensitivity(59).  

AMPK-dependent pathway plays a central role in exercise-mediated lipid 

metabolism. Zou et al. demonstrated that swimming exercise for 4 hours per day, 5 

days per week for 12 weeks decreased de novo lipogenesis and promoted liver 
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lipophagy and fatty acid β-oxidation by activating AMPK/Sirtuin 1 signaling in 

MASLD Zebrafish(60). Qian et al. noted that swimming training for 45 minutes per 

day, 5 days per week for 8 weeks induced hepatoprotection in HFD-fed mice was 

achieved by inhibiting the upregulation of hydroxy-3-methylglutaryl-CoA synthase 

2 (HMGCS2), which serves as the key rate-limiting enzyme in ketogenesis(61). 

Another study showed that treadmill running for 60 minutes per day, 7 days per week 

for 12 weeks, induced hepatic adenosine deaminases acting on RNA 2 (ADAR2), 

which protect against lipogenesis during MASLD by decreasing the level of miR-

34a(62). In addition, exercise regulates hepatic lipid metabolism by modulating gut 

microbiota(63). 
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Figure 1. Physical exercise on hepatic lipogenesis and lipolysis. Physical exercise 

suppresses hepatic lipogenesis and promotes liver triglyceride breakdown, 

enhancing lipolysis. FFA: free fatty acid; ACC: acetyl-CoA carboxylase; FAS: fatty 

acid synthase; SCD1: stearoyl-CoA desaturase 1; SREBP-1: sterol regulatory 

element-binding protein 1; FA: fatty acid; TG: triglyceride; HSL: Hormone-

Sensitive Lipase; ATGL: Adipose Triglyceride Lipase; SIRT1: silent information 

regulator T1. 
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Skeletal muscle is critical in absorbing and utilizing FFAs for energy during 

exercise(64). Physical exercise enhances FFA utilization by skeletal muscle and 

promotes mitochondrial energy production, leading to more efficient utilization of 

FFAs. Exercise improves muscle cells' responsiveness to insulin, leading to more 

efficient absorption and utilization of glucose for energy production(65). This 

process, coupled with the indirect effects on FFA metabolism, contributes to the 

burning of stored fat. Consequently, physical exercise improves the body’s overall 

energy metabolism efficiency(66).  

Immunomodulation  

Hepatic inflammation is a critical factor in the development and progression of liver 

diseases(67). Physical exercise is pivotal in regulating the hepatic inflammatory 

response by modulating key cytokines and signaling pathways(68), which emerges 

as a potent modulator of immune cell infiltration within the liver and the tumor 

immune microenvironment(69-71), effectively reducing hepatic inflammatory 

response (Figure 2).  

In the acute hepatic injury model, our group has shown that 60 minutes per day, 5 

days per week for 4 weeks of aerobic pre-operative exercise regimen significantly 

attenuates liver injury and inflammation from ischemia and reperfusion in mice. We 

found that exercise specifically drives Kupffer cells (KC) toward an anti-

inflammatory phenotype with trained immunity via metabolic reprogramming(32). 

In the context of acute liver injury induced by N-galactosamine (GalN) and 

lipopolysaccharide (LPS), a median of 45 days of voluntary long-distance running 

has been found to alter the intrahepatic immunophenotype, which reduces the 

number of intrahepatic CD4+ T cells, B lymphocytes, and macrophages, thereby 
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leading to a change of hepatic microenvironment that is less susceptible to acute 

liver injury in mice(72).  

In MASH, treadmill training for 60 minutes per day, 5 days per week for 12 weeks 

has shown the capacity to attenuate hepatic inflammation, liver steatosis, and fibrosis 

by inhibiting the hepatic accumulation of bone marrow-derived macrophages and 

PD-1+ CD8+ T cells in mice(73). Additionally, the study by Cai et al. revealed that 

swimming training for 60 minutes per day, 7 days per week for 12 weeks, down-

regulated the expression of key markers associated with insulin resistance, including 

PPAR-γ, carnitine palmitoyl transferase-1 (CPT-1), and medium-chain acyl-CoA 

dehydrogenase (MCAD), ultimately leading to improved insulin sensitivity in HFD-

induced MASLD mice(74). A randomized clinical trial including 60 minutes per 

day, 3-5 times per week for the 12-week aerobic exercise regimen, has been shown 

to elevate the levels of the apoptotic marker CD95 in mucosa-associated invariant T 

cells (MAIT) cells, both in the blood and within the liver in patients of MASLD. 

Additionally, this exercise regimen leads to decreased intrahepatic MAIT cells and 

notable histological improvements(75). Exercise also hinders the activity of hepatic 

bone marrow-derived macrophages, thereby reducing the accumulation of 

inflammatory macrophages stemming from monocytes and bone marrow precursors 

in mice(71). Moreover, a specific subset of KC known as CD206+ ESAM+ KC has 

been identified to promote oxidative stress through the scavenger receptor CD36, a 

pivotal factor in MASH progression(76). Treadmill running for 60 minutes per day, 

5 days per week for 16 weeks, can reduce the expression of CD36 in KC(77), thereby 

decelerating the progression of MASH by altering the phenotype of these cells in 

mice.  

Through targeted alterations in hepatic mRNA expression, exercise effectively 

suppresses the production of pro-inflammatory cytokines, including interleukin-6 

(IL-6), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and monocyte 
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chemoattractant protein-1 (MCP-1)(78), and elevates the expression of anti-

inflammatory mediators, such as interleukin-10 (IL-10)(79). Remarkably, this 

suppression is accompanied by a reduction in infiltrating macrophages, distinctly 

mitigating immune cell-driven inflammation characteristic of MASH(71). In 

addition to immunomodulatory effects, push-ups and set squats for 20-30 minutes 

per day, 3 days per week for 12 weeks, reduce hepatocyte apoptosis, specifically 

involving cytokeratin 18 in MASLD patients(80). Additionally, treadmill running 

for 50 minutes per day, 5 days per week for 12 weeks, effectively inhibits the hepatic 

TLR4-mediated NF-κB pathway through apolipoprotein A5, further enhancing its 

protective effects on the liver(81). The level of physical exercise is inversely related 

to hepatic fibro inflammation, as measured by iron-corrected T1, underscoring its 

pivotal role in maintaining liver health and mitigating inflammation-associated liver 

diseases(82). 

Natural Killer (NK) cells are vital component of the innate immune system, 

primarily responsible for immunosurveillance and eliminating cells with low 

expression of major histocompatibility complex class I(83). Interleukin-15 (IL-15) 

is a critical activator of NK cells and enhances their anti-tumor responses(84). A 

cross-sectional study of 133 medical students indicated that regular endurance 

training increases serum IL-15 expression(85). Also, treadmill running for 60 

minutes per day, 5 days per week for 12 weeks, increases the expression of NK cell 

ligands retinoic acid early inducible gene 1 (RAE-1) in the liver tissue of tumor-

bearing mice, thereby enhancing the cytotoxic capabilities of NK cells(86). The 

efficacy of T cells in recognizing and eliminating cancer cells is paramount in 

preventing tumor growth and forms the basis of current immunotherapy(87). During 

exercise, higher levels of metabolites such as lactate released into the bloodstream 

from skeletal muscle enhance the effector profile of CD8+ T cells. In response to 

exercise, activated CD8+ T cells in mice adapt their central carbon metabolism. 
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Transferring trained mouse CD8+ T cells into untrained tumor-bearing animals 

produces a more potent antitumor effect(88).  
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Figure 2. Physical exercise on liver/tumor immune microenvironment in liver 
diseases. Physical exercise inhibits the infiltration of pro-inflammatory immune 

cells into the liver in benign liver diseases (left) while recruiting anti-tumor immune 

cells to both the liver and tumor microenvironment in malignant liver diseases(right). 
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Exercise in Liver Ischemia/Reperfusion (I/R) Injury 

Liver I/R injury is a complex and multifaceted acute inflammation liver disease that 

occurs when the blood supply to the liver is temporarily interrupted and restored(89). 

This process may occur in various clinical situations, such as liver surgery, trauma, 

or liver transplantation(90). Ischemia is the initial phase that leads to hypoxia in liver 

tissue, resulting in cellular damage and metabolic disturbances. Subsequently, 

during the reperfusion phase, tissue damage is exacerbated due to the release of ROS 

and inflammatory mediators. This phenomenon leads to severe hepatic dysfunction 

and, in extreme cases, multi-organ failure(91). The pathophysiology of hepatic I/R 

injury involves a complex interplay of various cellular and molecular 

mechanisms(92). It is, therefore, an essential area of research for developing 

therapeutic strategies to mitigate its harmful effects.  

Exercise activates AMPK, an intracellular sensor that plays a role in metabolic 

reprogramming(93). The AMPK activator 5-aminoimidazole-4-carboxamide 

ribonucleotide (AICAR) enhances ischemic tolerance and fatty liver regeneration 

after hepatic I/R in diet-induced hepatic steatosis mice(94). Another key player in 

the liver I/R process is irisin, a hormone-like molecule released from muscle tissue 

during physical exercise(95). Irisin's ability to attenuate hepatic I/R injury by 

binding to the αVβ5 integrin receptor in hepatocytes has significant 

implications(96). Administering irisin at the onset of reperfusion has been shown to 

improve mitochondrial function, reduce oxidative stress, and alleviate endoplasmic 

reticulum stress in HFD mice, ultimately mitigating liver injury(97). 

In liver transplantation, exercise plays a distinct role in enhancing the overall well-

being of individuals undergoing this life-transforming procedure. Both pre- and 

post-transplant exercise training are recognized as safe and highly beneficial(98, 99). 
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A meta-analysis including 8 randomized controlled trials (RCTs) indicates that 

exercise training improves liver transplantation candidates' physical function and 

health-related quality of life (HRQOL), furthering their cardiorespiratory and muscle 

health(100). It optimizes their post-transplant recovery, ultimately contributing to an 

improved long-term quality of life following transplantation. 

Exercise in Cardiogenic Liver Disease 

Other conditions leading to liver injury, including cardiogenic liver disease triggered 

by myocardial infarction, may benefit from exercise. Treadmill running for 60 

minutes per day, 5 days per week for 6 weeks has the potential to effectively mitigate 

liver injury by promoting the anti-inflammatory phenotype of hepatic macrophages, 

attenuating myocardial infarction-induced hepatic inflammation, enhancing the 

expression of fibronectin type III domain-containing protein 5 (FNDC5) protein, and 

activating the PI3K/protein kinase B signaling pathway in the liver of myocardial 

infarction-afflicted mice(101). 

Exercise in MASLD 

MASLD is indeed one of the most prevalent chronic liver disorders worldwide, 

affecting up to 25% of the global population(102). This condition encompasses a 

range of histological features, including hepatic steatosis, hepatocyte ballooning, 

hepatic lobular inflammation, and liver fibrosis. Approximately 4% of individuals 

with simple steatosis and over 20% of those with MASH are expected to develop 

cirrhosis during their lifetime(103). MASLD is a complex multifactorial disease 

whose exact pathogenesis is not fully understood. Insulin resistance and liver 

steatosis may represent the first hit for the liver(104). However, it's important to note 

that steatosis, or fat accumulation in the liver, is typically an early event in MASLD 

and doesn't necessarily progress to MASH. Additional stresses are required to induce 
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MASH onsets, such as oxidative stress, lipotoxicity, inflammation, subsequent 

stimulation of hepatocyte death, tissue regeneration, and fibrogenesis(104).  

A large amount of evidence derived from clinical studies of MASLD supports the 

vital role of physical exercise in improving histological parameters and decelerating 

the progression of the disease. This includes its ability to enhance insulin resistance, 

reduce hepatic steatosis, and attenuate hepatic inflammation(30, 105). For instance, 

a randomized clinical trial conducted by Charatcharoenwitthaya et al. reported 

moderate-intensity aerobic exercise or resistance training for 60 minutes per day, 5 

times per week for 12 weeks, coupled with dietary modifications equally reduced 

intrahepatic fat and substantially improved underlying insulin resistance in 

individuals diagnosed with MASLD(30). It is worth noting that the effectiveness of 

exercise in combating hepatic insulin resistance varies based on the duration of the 

intervention. Hari et al. discovered that short-term (7d) treadmill training consists 

60 minutes per day at 80%-85% of maximal heart rate increased peripheral insulin 

sensitivity by 34% in radiographically-confirmed MASLD (>5% intra-hepatic lipid 

content) patients(106). Another meta-analysis that included 26 randomized clinical 

trials showed that short-term exercise interventions, lasting less than 12 weeks, have 

shown efficacy in reducing specific insulin resistance markers such as fasting blood 

glucose (FBG) and the homeostatic model assessment of insulin resistance (HOMA-

IR)(107). Interestingly, a randomized controlled trial indicated that combining 

moderate-intensity aerobic exercise (60 minutes per day, 5 times per week for 12 

weeks) with alternate-day fasting has been shown to reduce insulin resistance in 

adults with MASLD. However, this combined approach does not significantly 

enhance insulin resistance improvements compared to exercise alone(108). These 

clinical findings underscore the therapeutic potential of physical exercise as a potent 

tool in combatting insulin resistance in MASLD. 
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Several clinical studies demonstrate that physical exercise reduces intrahepatic 

triglyceride (IHTG) levels, which is independent of weight loss(24, 108-110). A 

systematic review has compared the therapeutic effects of aerobic and resistance 

exercises on hepatic steatosis in MASLD. They found that both aerobic and 

resistance exercise improved hepatic steatosis to a similar extent, with common 

parameters of duration, frequency, and training period (40-45 minutes/session, 3 

times/week for 12 weeks)(7). However, resistance exercise may be more feasible for 

MASLD patients with poor cardiorespiratory fitness because it improves MASLD 

with lower intensity and less energy consumption(7). Additionally, a meta-

regression analysis from 17 studies (373 exercising participants) revealed a 

significant negative correlation between the duration of exercise and the reduction 

in IHTG (β = -0.27 [95% CI: -0.35 to -0.19], p < 0.001). This suggests that as the 

duration of exercise increases, the reduction in IHTG becomes more pronounced. 

Specifically, compared with shorter high-intensity exercise, continuous moderate-

intensity protocols commonly exhibit a more significant decrease in IHTG in those 

MASLD patients(111). The study revealed no statistically significant distinctions 

among the three levels of aerobic exercise regimens regarding reducing intrahepatic 

lipid content. The results demonstrated that even minimal engagement in exercise 

led to a noticeable reduction in intrahepatic lipid levels(111). These findings 

highlight the importance of developing individualized sustainable exercise 

interventions that may yield the most significant benefits for IHTG reduction in 

patients with MASLD.  

Although the FDA has approved Rezdiffra (resmetirom) as the first drug treatment 

for MASH patients with moderate to advanced liver scarring (fibrosis), lifestyle 

modification, including physical exercise, remains generally recommended as a 

first-line therapy for all patients with MASLD(112). In line with this 

recommendation, the American Gastroenterological Association recommends that 
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all patients with MASLD should engage in regular physical activity with a target of 

150-300 minutes of moderate-intensity (3–6 MET) or 75-150 minutes of vigorous-

intensity (more than 6 MET) aerobic exercise per week. Resistance training can be 

complementary to aerobic exercise but not a replacement (Figure 3)(112). 

Exercise in Portal Hypertension (PH) 

PH is defined as abnormally high blood pressure within the portal vein system, 

primarily caused by cirrhosis and other portal vein obstruction, such as portal vein 

thrombosis(113). PH can lead to serious complications such as ascites, variceal 

bleeding, splenomegaly and an elevated risk of spontaneous bacterial peritonitis or 

other infections, hepatic encephalopathy, hepatorenal syndrome, and liver 

failure(114). The gold standard for the diagnosis of PH is the hepatic venous pressure 

gradient (HVPG). An HVPG value exceeding 5 mmHg indicates the presence of PH, 

while a value above 10 mmHg denotes clinically significant portal hypertension 

(CSPH). This latter threshold is considered clinically significant because it marks 

the point at which complications of PH begin to develop(115). Treatment of PH 

focuses on reducing portal pressure, preventing complications, and managing 

symptoms. This approach mainly includes the medication (non-selective beta-

blockers), the transjugular intrahepatic portosystemic shunt (TIPS), and pericardial 

devascularization(116).  

Research on the impact of physical exercise on PH is limited and has historically 

raised concerns about the potential for exacerbating complications such as hepatic 

encephalopathy or bleeding post-exercise(117). Initial studies indicated that 8-10 

minutes of cycling at 30% and 50% of peak workload increased HVPG(117). In a 

randomized controlled trial, 40 patients with compensated cirrhosis of Child-Pugh 

A were recruited to evaluate the effects of a 12-week home-based exercise program. 

The regimen included moderate- intensity aerobic/isotonic continuous training 
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exercises, lasting 40 minutes per session, conducted at least 4 times weekly. This 

study reported no adverse events such as gastrointestinal bleeding, ascites, or 

musculoskeletal injuries, yet it did not find any beneficial impact on PH(118). 

Conversely, another pilot randomized clinical trial involving 29 patients with 

cirrhosis and PH (average HVPG > 10 mm Hg) who participated in a 14-week 

supervised exercise program showed significant benefits. The regimen, which 

consisted of physical exercises performed for 40 minutes, 3 times a week at an 

intensity of 12-14 on the Borg Rating of Perceived Exertion scale, led to an average 

reduction in HVPG of 2.5 mm Hg, with no episodes of variceal bleeding or hepatic 

encephalopathy observed(119). Additionally, a prospective, multicenter, 

uncontrolled pilot study focused on the effects of an intensive lifestyle intervention 

on patients with compensated cirrhosis and PH (HVPG ≥ 6 mmHg). Participants 

were engaged in a 16-week intensive lifestyle modification program, which included 

a personalized hypocaloric normoproteic diet and 60 minutes of supervised physical 

activity (10 minutes of warm-up, 40 minutes of aerobic and strength exercising 

routine, and 10 minutes of cooling down) each week. Results showed a significant 

reduction in HVPG, decreasing from an average of 13.9±5.6 mmHg at baseline to 

12.3±5.2 mmHg post-intervention, with 42% of participants achieving an HVPG 

decrease of ≥ 10%. However, the study's design does not confirm whether the 

observed reductions in PH were due to exercise, diet, or a combination of both(120).  

Current research on PH is primarily focused on cirrhosis-induced cases, with other 

causes of PH have not been well studied. Additionally, there is a lack of 

comprehensive data on the appropriate intensity, duration, and type of exercise 

required for effective treatment and prevention of PH, and thus no consensus has 

been reached in this area. 

Exercise in Cirrhosis 
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Cirrhosis, primarily caused by MASLD, viral hepatitis, and alcohol consumption, 

accounts for 2.4% of global deaths in 2019(121, 122). Cirrhosis manifests as 

extensive fibrosis, resulting in nodular changes in liver structure. Portal hypertension 

in combination with cirrhosis can lead to severe complications such as ascites, 

variceal bleeding, and hepatic encephalopathy(113). The liver's ability to synthesize 

and metabolize is impaired in cirrhosis, and the risk of hepatocellular carcinoma is 

elevated(3). 

Physical exercise has been demonstrated to diminish hepatic inflammation and 

fibrosis by influencing different signaling pathways. The mechanisms are primarily 

associated with the regulation of several related signaling pathways, including the 

AMPK signaling pathway(123), the 3-hydroxy-3-methylglutaryl-CoA synthase 2 

(HMGCS2)-regulated Wnt3a/β-catenin pathway(61), monoacylglycerol O-

acyltransferase 1(MGAT1) pathway(124), and MD2-TLR4 pathway(125), etc. In 

addition, these mechanisms encompass the inhibition of NLR family pyrin domain 

containing 3 (NLRP3) inflammasome activation(126), modulation of myeloid cell 

monocytes (MoMFs) infiltration in the liver(127), and restoration of gut 

microbiota(128). 

Numerous clinical studies have highlighted the advantageous effects of exercise for 

individuals in the early stages of cirrhosis. Aamann et al. found a regimen of 

resistance training for 1 hour, 3 times weekly for 12 weeks, not only diminished the 

risk of initial hospitalization and mortality among patients with cirrhosis classified 

as Child-Pugh class A/B three years post-trial entry but also resulted in increased 

muscle strength and size(31, 129). Sirisunhirun et al. implemented a 12-week 

program of aerobic moderate-intensity continuous training exercises, lasting 40 

minutes per session, at least 4 times a week, in compensated cirrhotic patients(118). 

This program significantly ameliorated the fatigue domain of the quality-of-life 

index without inducing adverse reactions. However, no benefits were observed in 
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thigh muscle mass, liver stiffness, or spleen stiffness. Moreover, a meta-analysis of 

randomized controlled trials by Kawaguchi et al. discovered that a median protocol 

of aerobic exercise for 30 minutes per session, 3 times a week for 12 weeks, in 

combination with a resistance exercise protocol of 60 minutes per session, 3 times a 

week for 10 weeks, significantly reduced the incidence of serious events in patients 

with liver cirrhosis and enhanced the 6-minute walk distance (6MWD), an 

independent prognostic factor for these patients(8, 130). 

Given the heterogeneity of disease progression and variable clinical presentations in 

cirrhosis, standardized exercise guidelines, particularly for resistance exercise, 

remain elusive(131). Nonetheless, there are established recommendations for the 

prescription of aerobic exercise in patients with cirrhosis. Before initiating an 

exercise regimen in cirrhotic patients, a comprehensive medical assessment is 

imperative. This assessment should encompass an evaluation of cardiopulmonary 

function, concurrent pathologies, and musculoskeletal constraints. Following this, it 

is crucial to delineate exercise objectives and modalities, adhering to the FITT 

(Frequency, Intensity, Time, and Type) principle, tailored to the patient's unique 

health condition. The clinical practice recommendations for patients with cirrhosis 

advocate for the engagement in physical exercise of mild to moderate intensity for 

30-60 minutes per session, 5 days per week (cumulatively ≥ 150 minutes per week) 

through an activity such as walking or cycle ergometry. The intensity should be 

calibrated to 30-40% of heart rate reserve or within a range of 10-14 on the Borg 

scale (Figure 3)(41). 

Exercise in Liver Cancer 

Liver cancer represents a significant global health challenge and the third leading 

cause of cancer death worldwide, accounting for approximately 7.8% of total cancer 

deaths in 2022(132). The impending burden of liver cancer is expected to affect over 
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one million individuals by 2025(133). Notably, physical exercise is emerging as a 

particularly promising strategy. Studies suggest that physical exercise might play a 

role in various aspects, including reducing the risk of developing liver cancer(134-

136), controlling liver cancer progression111, enhancing efficacy, and reducing the 

side effects of anti-cancer treatments(137, 138). This growing evidence suggests that 

physical exercise could be an effective component in combating liver cancer. 

The accumulating epidemiological evidence supports the potential protective role of 

physical exercise against liver cancer, particularly hepatocellular carcinoma (HCC). 

In the United States, a study revealed a moderate inverse correlation (r=-0.40, 

p=0.004) between state-level physical exercise and the incidence of HCC(9). This is 

further supported by comprehensive research from over 44 million participants 

across the US and Europe, revealing that higher levels of leisure-time physical 

exercise reduce liver cancer risk by over 20%(139). Another cohort study, 

quantifying the dose-response relationship between leisure-time physical exercise 

and liver cancer showed that engagement in 7.5-15 hours per week of leisure-time 

physical exercise was associated with an 18%-27% lower risk of liver cancer(134). 

However, the study also identified a nonlinear association between the risk of liver 

cancer and activity levels, implying a limit beyond which additional exercise does 

not further decrease liver cancer risk. This finding raises important questions about 

the optimal amount and intensity of physical exercise for liver cancer prevention. 

While these studies are groundbreaking, they are limited by their failure to adjust for 

other potentially important confounding factors, including viral hepatitis, MASLD, 

cirrhosis, and alcohol consumption. A prospective multinational cohort study further 

explored this association, finding physical exercise associated with a lower risk of 

liver cancers. This relationship persisted even after adjusting for liver cancer risk 

factors like alcohol consumption, smoking, waist circumference, or body mass 

index(140). Moreover, a meta-analysis provided further evidence, demonstrating a 
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23% reduction in liver cancer risk and a 19% decrease in mortality among 

individuals who engaged in moderate physical exercise, reinforcing the potential 

protective impact of exercise against liver cancer(141). 

The beneficial effects of physical exercise on liver cancer can be attributed to various 

systemic and local biological mechanisms. Obesity, an independent risk factor for 

mortality in primary liver cancer, can be significantly mitigated by physical exercise, 

reducing the associated risk117. Additionally, in patients with HCC, a decline in 

skeletal muscle mass is significantly associated with severe adverse events from 

chemotherapy, low tolerability, increased tumor recurrence, and all-cause 

mortality(142). Significantly, exercise intervention has improved skeletal muscle 

strength in these patients(143). This underscores the effective role of exercise in 

enhancing the management of liver cancer, potentially improving treatment 

outcomes and survival rates for affected individuals. The benefits of exercise on liver 

cancer can be elucidated through three fundamental mechanisms. Firstly, exercise 

regulates critical signaling pathways and modulatory proteins crucial in HCC 

progression. This includes the suppression of transforming growth factor-beta (TGF-

β)(144), downregulation of dynamin-related protein 1(DRP1)(145), activation of 

p53(146), and modulation of the AMPK/mTOR signaling pathway(147). Secondly, 

exercise enhances anti-tumor immunity by increasing the CD8+ T cells infiltration 

into the tumor microenvironment (TME), creating a hostile environment for tumor 

growth and progression within the liver(148). Thirdly, exercise induces metabolic 

reprogramming of TME(149), forming an exercise-induced metabolic shield 

unfavorable for tumor cell colonization. This metabolic reprogramming underscores 

the role of exercise in reshaping the metabolic landscape of the TME to impede 

cancer progression and metastasis. Beyond these specific mechanisms, exercise also 

influences other critical factors, such as angiogenesis and oxidative stress, which can 

affect tumor growth and survival(150). However, it is essential to acknowledge that 
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current research on these mechanisms remains limited, necessitating further 

empirical investigation to substantiate these findings and fully elucidate their 

implications in the context of liver cancer management. 

The American Society of Clinical Oncology and the American College of Sports 

Medicine actively endorse the integration of regular exercise into both cancer 

treatment regimens and post-treatment recovery(151, 152). During the second 

roundtable conference held in 2018, an updated consensus on exercise programs for 

cancer survivors, including those with liver cancer, was presented. The most 

effective exercise prescription for addressing health-related outcomes caused by 

cancer diagnosis and treatment includes engaging in moderate-intensity aerobic 

training at least 3 times per week, for at least 30 minutes each session, for at least 8-

12 weeks. In addition to aerobic training, incorporating resistance training at least 

twice a week, with at least 2 sets of 8-15 repetitions, where each repetition is 

performed with at least 60% of the maximum weight that can be lifted once, appears 

to offer similar benefits (Figure 3)(153). This endorsement highlights the 

recognized importance of physical activity in enhancing the overall health and 

quality of life for individuals undergoing cancer therapy and those in the recovery 

phase post-treatment.  Further evidence is needed to formulate individualized and 

realistic exercise programs, including the type, intensity, and duration of exercise, 

ensuring their effectiveness and feasibility for patients with liver cancer. 
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Figure 3. Aerobic exercise（upper）and resistance exercise（ lower）  are 

recommendations for normal-condition patients with MASLD, cirrhosis, and 

liver cancer. 
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Physical Exercise Indirectly Improves Liver Diseases through Other Organs 

Physical exercise offers systemic benefits that improve health and disease resistance 

across various organs. In the brain, physical exercise enhances cognitive functions 

through multiple mechanisms: it increases the generation of new neurons in the 

hippocampus via brain-derived neurotrophic factor(154), suppresses 

neuroinflammation by up-regulating amyloid-β peptide (Aβ) transporter activity to 

clear Aβ(155), and promotes neuroplastic changes by altering the synaptic structure 

and function(156). Cardiovascular health benefits significantly from physical 

exercise, which promotes myocardial mitochondrial biogenesis and autophagy 

through the peroxisome proliferator-activated receptor gamma coactivator 1-alpha 

(PGC-1α)(157). Additionally, exercise attenuates myocardial inflammation and 

apoptosis by regulating the apelin peptide jejunum (APJ)/ signal transducer and 

activator of transcription 3 (STAT3) signaling pathway(158), and it improves heart 

function after myocardial infarction through the AMPK signaling pathway(159). For 

muscles, physical exercise increases the utilization  of glucose and fatty acid(160), 

promotes the secretion of myokines that facilitate communication with other organs 

such as adipose tissue, liver, and pancreas(161), and reduces the risk of sarcopenia 

by maintaining muscle mass and strength(162). Moreover, physical exercise 

contributes to promoting adipose tissue utilization(163), boosts the anti-

inflammatory gene expression in adipose tissue(164), and enhances paracrine and 

endocrine functions of adipose tissue by increasing the production of beneficial 

adipokines and extracellular vesicles(165). Exercise also benefits gut health by 

regulating the gut microbiota and increasing butyrate production(166), and restoring 

intestinal barrier integrity(167). 
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Physical exercise indirectly promotes liver health through its effects on other organs. 

For instance, physical exercise stimulates the brain to secrete insulin-like growth 

factor 1 (IGF-1)(168), which alleviates hepatic histologic lesions in MASH(169). 

Additionally, exercise enhances cardiopulmonary efficiency, which significantly 

improves overall well-being and quality of life in adult liver transplant 

recipients(100). Physical exercise also triggers the release of myokines such as Irisin, 

which can inhibit hepatic inflammation by competitively binding with MD2 to 

improve MASLD(170). Moreover, exercise helps reduce the accumulation of 

adipose tissue, addressing a key factor in the development of MASLD(109). It also 

regulates the gut microbiota, providing therapeutic benefits for liver diseases like 

MASLD and cirrhosis(171, 172). Through these indirect mechanisms, physical 

exercise substantially supports liver health, highlighting its wide-ranging impact. 

Conclusion and Further Perspective 

In summary, the existing literature demonstrates the impact of physical exercise on 

liver health, as it effectively improves critical factors such as insulin resistance, 

hepatic fatty acid metabolism, and the modulation of inflammatory cascades. These 

findings support the current guidelines recommending tailored exercise programs to 

enhance long-term adherence and promote an active lifestyle among patients with 

liver diseases. However, there remains a pressing need for multicenter clinical trials 

to establish exercise norms for different disease stages, thereby further enriching our 

understanding of the role of exercise in liver diseases management. 
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