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Abstract

Resistance training activates mammalian target of rapamycin (mTOR) pathway of hypertrophy for strength gain, while 

endurance training increases peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) pathway of mitochondrial 

biogenesis benefiting oxidative phosphorylation. The conventional view suggests that resistance training-induced hypertro-

phy signaling interferes with endurance training-induced mitochondrial remodeling. However, this idea has been challenged 

because acute leg press and knee extension in humans enhance both muscle hypertrophy and mitochondrial remodeling 

signals. Thus, we first examined the muscle mitochondrial remodeling and hypertrophy signals with endurance training 

and resistance training, respectively. In addition, we discussed the influence of resistance training on muscle mitochondria, 

demonstrating that the PGC-1α-mediated muscle mitochondrial adaptation and hypertrophy occur simultaneously. The 

second aim was to discuss the integrative effects of concurrent training, which consists of endurance and resistance train-

ing sessions on mitochondrial remodeling. The study found that the resistance training component does not reduce muscle 

mitochondrial remodeling signals in concurrent training. On the contrary, concurrent training has the potential to amplify 

skeletal muscle mitochondrial biogenesis compared to a single exercise model. Concurrent training involving differential 

sequences of resistance and endurance training may result in varied mitochondrial biogenesis signals, which should be linked 

to the pre-activation of mTOR or PGC-1α signaling. Our review proposed a mechanism for mTOR signaling that promotes 

PGC-1α signaling through unidentified pathways. This mechanism may be account for the superior muscle mitochondrial 

remodeling change following the concurrent training. Our review suggested an interaction between resistance training and 

endurance training in skeletal muscle mitochondrial adaptation.
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Abbreviations

AMPK  AMP-activated protein kinase

ATP  Adenosine triphosphate

C I  Complex I

C II  Complex II

C V  Complex V

Cox4  Cytochrome c oxidase 4 subunit

CS  Citrate synthase

ET  Endurance training

FTO  Fat mass-and obesity-associated

fCSA  Fiber cross-sectional area

HIIT  High intensity interval training

IHC  Immunohistochemistry

LKB1  Liver kinase B1

mTOR  Mammalian target of rapamycin

mTORC1/2  MTOR complex 1/2

MVC  Maximum volunteer contraction

VO2max  Maximum oxygen uptake

Mfn1/2  Mitofusin1/2

Nrf1  Nuclear respiratory factor-1

OXPHOS  Oxidative phosphorylation

p38 MAPK  P38 mitogen-activated protein kinase

PDK-4  Pyruvate dehydrogenase kinase-4
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PRC  PGC-1-related coactivator

PGC-1α/β  Peroxisome proliferator-activated receptor γ 

coactivator 1α/β

PCr  Phosphocreatine

qPCR  Quantitative PCR

RM  Repetition maximum

RT  Resistance training

S6K1  Ribosomal S6 protein kinase 1

TSC  Tuberous sclerosis complex

Tfam  Mitochondrial transcription factor A

VL  Vastus lateralis

VDAC  Voltage-dependent anion channel

WB  Western blot

Introduction

Exercise can alleviate the morbidity of chronic diseases, 

which is associated with skeletal muscle adaptations (Noakes 

and Spedding 2012). Skeletal muscle undergoes metabolic 

remodeling involving mitochondria upon environmental 

stimuli to maintain its physiological function (Janssen et al. 

2000; Strasser and Schobersberger 2011; Tanaka and Kane-

hisa 2014). Skeletal muscle mitochondria are classified into 

subsarcolemmal and intermyofibrillar pools. Subsarcolem-

mal mitochondria are located beneath the sarcomere and 

provide energy for the sarcolemma, while intermyofibril-

lar mitochondria are located between myofibrils, producing 

energy for contractile function (Gan et al. 2018; Glancy et al. 

2015). Muscle mitochondria constantly synthesize adenosine 

triphosphate (ATP) to meet the demands imposed by exer-

cise through oxidative phosphorylation (OXPHOS) (Hood 

et al. 2019).

Endurance training, known as aerobic exercise training, 

can increase skeletal muscle mitochondrial biogenesis and 

respiration, enhancing aerobic capacity (Chen et al. 2018). 

On the other hand, resistance training, known as strength 

training, can promote muscle hypertrophy and strength 

involving ribosome biogenesis, where protein synthesis 

exceeds breakdown (Hawley et al. 2014). Early studies sug-

gested that there was an interference effect between hyper-

trophy signaling and mitochondrial remodeling signaling. 

It was believed that resistance training could hinder aerobic 

capacity in humans (Hawley 2009; Nelson et al. 1990). A 

recent systematic review has shown that performing endur-

ance and resistance training together has a small negative 

effect on type I fiber hypertrophy compared to resistance 

training alone (Lundberg et al. 2022). However, it has not 

been reviewed whether this interference effect exists in mito-

chondrial remodeling. A review has shown that resistance 

training increases lean weight and alleviates of muscle-

related diseases (Westcott 2012). The desirable effects are 

inevitably associated with the remodeling of skeletal muscle 

mitochondria. Moreover, emerging studies have shown that 

concurrent training, which includes resistance training 

and endurance training, can lead to improvements in both 

muscle hypertrophy and mitochondrial oxidative capacity 

(Jones et al. 2021; Wang et al. 2011). Therefore, it is unrea-

sonable to assume that resistance training hinders muscle 

mitochondrial function for aerobic capacity. Our review 

provides a briefly overview of the skeletal muscle signals 

involved in resistance training or endurance training. We 

comprehensively examine the relationship between concur-

rent training and skeletal muscle mitochondria. The purpose 

of this review is to discuss whether the two training modes 

in concurrent training increase or compromise mitochondrial 

remodeling. Our work can shed light on the understanding 

of the interaction between resistance training and endurance 

training on skeletal muscle mitochondrial remodeling.

Muscle mitochondrial remodeling signaling 
and endurance training

The mechanisms of exercise-induced mitochondrial remod-

eling are summarized in Fig. 1. A line of studies focused 

on skeletal muscle mitochondrial function following endur-

ance training, which have been reviewed by other groups 

(Dong and Tsai 2023; Hood et al. 2019). An earlier study 

found that treadmill running elevated muscle mitochondrial 

enzyme activities and this adaptation occurred following 

long-term endurance training (Holloszy 1967). A classic 

adaptation of skeletal muscle mitochondria with endurance 

training is the enhancement of mitochondrial biogenesis 

which is highly dependent on peroxisome proliferator-acti-

vated receptor γ coactivator 1α (PGC-1α) (Halling and Pile-

gaard 2020). Repeated aerobic exercises increase oxidative 

capacity to synthesize adequate ATP via PGC-1α signaling 

(Hood et al. 2019). PGC-1α is required for the transcription 

of nuclear and mitochondrial genome-encoded proteins for 

electron transport chain (ETC) assembly, and PGC-1α pro-

tein expression is enhanced in human skeletal muscle fol-

lowing endurance training (Drake et al. 2016; Halling et al. 

2017; Islam et al. 2020; Norrbom et al. 2004; Pilegaard et al. 

2003). Forced expression of PGC-1α in muscle by transgenic 

manipulation increased oxidative type I and IIa fiber transi-

tion and improved fatigue resistance (Lin et al. 2002). In 

contrast, exercise-induced augmentation of mitochondrial 

biogenesis was compromised in muscle PGC-1α knockout 

mice (Geng et al. 2010). These results suggest that PGC-1α 

is involved in exercise-induced mitochondrial adaptation.

As an energy sensor, AMP-activated protein kinase 

(AMPK) is activated by exercise and phosphorylates 

PGC-1α to increase its activity; p38 mitogen-activated pro-

tein kinase (p38 MAPK) also activates PGC-1α via tran-

scriptional and post-transcriptional pathways. PGC-1α then 
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increases nuclear respiratory factor (Nrf), mitochondrial 

transcription factor A (Tfam), and other transcription-associ-

ated nuclear genes to coordinate the nuclear DNA and mito-

chondrial DNA transcription, resulting in enhanced mito-

chondrial biogenesis in muscle (Drake et al. 2016; Halling 

and Pilegaard 2020).

Mitochondrial remodeling to endurance training also 

involves mitochondrial dynamics, including fusion and fis-

sion. Fusion proteins such as mitofusin1/2 (Mfn1/2) and 

optic atrophy 1 mediate mitochondrial fusion in heathy 

mitochondria, facilitating the process of two mitochondria 

sharing the metabolites, diluting the defective mitochondrial 

DNA, and increasing mitochondrial mass to achieve mito-

chondrial biogenesis (Spinelli and Haigis 2018). Skeletal 

muscle mitochondria also undergo fission process mediated 

by dynamin-related protein 1, fission protein 1, and mito-

chondrial fission factor, in which the healthy mitochon-

drion is divided into two healthy daughters. In defective 

mitochondria, asymmetric fission occurs and the damaged 

components are preferentially allocated to a daughter mito-

chondria, leaving the healthy mitochondria (Dahlmans et al. 

2016; Gustafsson and Dorn 2019; Hall et al. 2014; Hood 

et al. 2019). The most damaged mitochondria are selectively 

degraded by PTEN-induced putative kinase 1/Parkin and 

other mitophagy pathways to maintain the muscle mitochon-

drial homeostasis (Dorn 2nd 2015; Gustafsson and Dorn 

2019).

Muscle hypertrophic signaling 
and resistance training: mTOR and its 
upstream factors

The mechanisms of exercise-induced muscle hypertrophy 

are summarized in Fig. 1. Increase of skeletal muscle hyper-

trophy involves with the protein synthesis enhancement, 

Fig. 1  Mechanisms of different exercise trainings-induced hyper-

trophy and mitochondrial remodeling in skeletal muscle. Resistance 

training promotes mTOR-related hypertrophic signaling and satellite 

cells fusion with myofibers, resulting in enhanced protein synthesis 

(A). Endurance training modulates liver kinase B1 (LKB1)/AMPK/

PGC-1α and mitochondrial fusion signals to enhance mitochondrial 

biogenesis in skeletal muscle (B)
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which is associated with muscle growth, ribosome biogen-

esis, and satellite cells activation (Hawley et al. 2014; Sol-

sona et al. 2021). Mammalian target of rapamycin (mTOR) 

mediates the muscle contraction-induced protein synthesis 

and exists as two complexes: mTOR complex 1 (mTORC1) 

and mTOR complex 2 (mTORC2) (Drummond et al. 2009). 

mTORC1 regulates the muscle hypertrophic response fol-

lowing mechanical overload (Adegoke et al. 2012; Good-

man 2019; You et al. 2019). As a key upstream regulator of 

mTORC1, insulin-like growth factor 1 (IGF-1) interacts with 

its receptor to increase protein kinase B (also known as Akt) 

activity. Akt then represses the mTORC1 inhibitor tuberous 

sclerosis complex (TSC) and activates mTORC1, initiating 

Akt/mTORC1 signaling for anabolic processes (Glass 2010; 

Toker and Dibble 2018; Yoshida and Delafontaine 2020). 

Extracellular signal-regulated kinase (ERK) has been shown 

to inhibit TSC, contributing to mTORC1 activation at the 

early stage of mechanical overload independently of Akt, 

providing evidence that ERK is an independent regulator 

of mTORC1 (Miyazaki et al. 2011). Diacylglycerol kinase 

ζ activates diglyceride and synthesizes phosphatidic acid, 

which is also required for mechanical stimuli-induced skel-

etal muscle hypertrophy, as phosphatidic acid can bind to 

mTORC1 and increase its activity (You et al. 2014).

Regulatory associated protein of mTOR (Raptor) is an 

essential component of mTORC1. Ablation of Raptor in 

rodents suppressed mTORC1 signaling, resulting in a dys-

trophic muscle phenotype and compromised muscle hyper-

trophic response with functional overload (Bentzinger et al. 

2013, 2008). Conversely, activation of mTORC1 by knock-

out of muscle TSC induced the myofiber hypertrophy and 

atrophy-resistance with denervation in mice (Bentzinger 

et al. 2013). mTORC1 activity and its translocation to the 

lysosome of skeletal muscle were increased after acute knee 

extension (65% 1 repetition maximum) in humans (D’Lugos 

et al. 2018). Therefore, mTORC1 signaling is a fundamental 

mechanism of workload-induced muscle hypertrophy (Schi-

affino et al. 2021).

Muscle hypertrophic signaling 
and resistance training: downstream 
signaling of mTOR

Downstream targets of mTORC1 include ribosomal S6 pro-

tein kinase 1 (S6K1) and eukaryotic initiation factor 4E-bind-

ing protein 1 (4E-BP1). S6K1 activates multiple substrates 

including ribosomal protein S6, eukaryotic elongation fac-

tor 2 (eEF2), and eukaryotic translation initiation factor 4B 

(eIF4B), promoting mRNA translation into protein and muscle 

growth (Csibi et al. 2010; Foster and Fingar 2010). S6K1 is 

implicated in muscle hypertrophy in response to overload. Rats 

subjected to 6 weeks resistance–eccentric contractility resulted 

in skeletal muscle hypertrophy, and the muscle mass response 

was positively correlated with S6K1 activity after the exer-

cise bout (Baar and Esser 1999). A bout of human leg press 

induced a significant increase in S6K1 and 4E-BP1 phospho-

rylation in the vastus lateralis, accompanied by an increased 

rate of myofibrillar protein synthesis (Moberg et al. 2016). In 

addition, 4E-BP1 is involved in ribosomal biogenesis, which 

contributes to muscle hypertrophy. After phosphorylation by 

mTORC1, 4E-BP1 dissociates from eukaryotic translation ini-

tiation factor 4E (eIF4E) and coordinates with RNA polymer-

ase I to promote pre-initiation complex formation, resulting 

in ribosomal biogenesis (Qin et al. 2016; Solsona et al. 2021).

Muscle hypertrophic signaling 
and resistance training: role of satellite cells

Once activated, satellite cells (SCs) can fuse with mature 

myofibers and benefit skeletal muscle hypertrophy process. 

Activation of SCs is more likely to occur in the muscle 

mechanically loaded by resistance training (Crameri et al. 

2004; Dreyer et al. 2006; Masschelein et al. 2020). When 

activated by exercise, SCs fuse with myofibers and result in 

an increase of myonuclei number (Goh et al. 2019). mTOR 

signaling is implicated in the SCs activation and improves 

the S6K1 activity, resulting in SCs development for the mus-

cle repairmen (Der Vartanian et al. 2019; Peng et al. 2023; 

Rodgers et al. 2014). Human resistance training activated 

SCs growth and mTORC1 signals and enhanced myogenic 

differentiation factor mRNA expression in the vastus lat-

eralis, indicating mTORC1 may promote SCs activation 

during mechanical overload (D’Lugos et  al. 2018; Lim 

et al. 2017). SCs-deleted mice by tamoxifen treatment with 

genetic engineering technology showed the blunted myonu-

clei accretion with overload, and the increased muscle fiber 

cross-sectional area (fCSA) was prevented in young SCs-

deleted mice (Murach et al. 2017). A report observed that 

increased fCSA was positively correlated with SCs-derived 

myonuclei accretion in young mice, and the mice lacking 

SCs of muscle displayed decreased myofiber size (Bachman 

et al. 2018). On the contrary, a study deleting muscle SCs 

did not find the compromised fCSA change after chronic 

mechanical overload in mice (McCarthy et al. 2011). Taken 

together, the activation of SCs may contribute to the muscle 

hypertrophic response.

Resistance training does not impede 
mitochondrial remodeling

Endurance training increases aerobic capacity through oxi-

dation of glucose, fatty acids, and other energy substrates 

in skeletal muscle mitochondria (Memme et  al. 2019). 

Resistance training mainly yields muscle hypertrophy, 
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where phosphocreatine (PCr)/ATP and glycolysis provide 

the majority of energy (Nitzsche et al. 2020). It was once 

thought that resistance training might impair mitochondrial 

aerobic capacity in muscle. However, it has been shown 

that resistance training effectively reduces the morbidity of 

chronic diseases, such as muscle wasting, type II diabetes, 

osteoporosis, and cardiovascular disease (Barajas-Galindo 

et al. 2021; Gordon et al. 2009; Reljic et al. 2021; Stanghelle 

et al. 2020; Westcott et al. 2009). These effects should be 

related to mitochondrial remodeling in skeletal muscle.

Previous experiment demonstrated that low-frequency 

(mimicking endurance training) and high-frequency (mim-

icking resistance training) electrical stimulations selectively 

activated AMPK/PGC-1α and Akt/mTOR signals in rodent 

skeletal muscle respectively, and concluded that high-fre-

quency electrical stimulation had little effect on AMPK/

PGC-1α pathway (Atherton et al. 2005). However, a human 

study found that the muscle AMPK and mTOR signals were 

simultaneously enhanced following a bout of low intensity 

leg press and knee extension in young men, suggesting that 

mitochondrial remodeling signals can be initiated by resist-

ance training (Vissing et al. 2013). After long-term resist-

ance training, a higher citrate synthase (CS) activity was 

reported with a robust increase of fCSA relative to individu-

als with a smaller increase of fCSA in young men, indicating 

that muscle hypertrophic response is positively associated 

with mitochondrial enzyme activities (Roberts et al. 2018). 

In this regard, skeletal muscle response to resistance train-

ing involves changes of both protein synthesis and oxidative 

capacity.

Resistance training also improves muscle 
mitochondrial remodeling

Increase of mitochondrial biogenesis is the fundamental 

remodeling that adapts to the energy demand in response 

to exercise intervention (Gan et al. 2018). The CS activity 

has been used to reflect the outcome of mitochondrial bio-

genesis, as CS activity is positively correlated with muscle 

mitochondrial content (Larsen et al. 2012). Although there 

was a report finding that muscle CS activity and mitochon-

drial dynamics did not change with resistance training in 

older men (Marshall et al. 2022), most of the investigations 

tended to suggest that resistance training could increase skel-

etal muscle mitochondrial fusion and biogenesis, especially 

in the adults with aging or/and diseases who undergo the 

decline of mitochondrial function (Jubrias et al. 2001; Mes-

quita et al. 2020; Mijwel et al. 2018; Robinson et al. 2017). 

An early study suggested that muscle mitochondria were 

“diluted” following resistance training by transmission elec-

tron microscopy (MacDougall et al. 1982). The “diluted” 

mitochondria may be attributable to the fact that enhanced 

mitochondrial biogenesis cannot catch up with the increased 

muscle mass after resistance training.

Resistance training also improves skeletal muscle mito-

chondrial respiration. A study found 8 weeks of resistance 

training (85–90% of 1RM knee extension) did not increase 

complex I + II-mediated respiration (state 3 respiration) 

in older adults (Berg et al. 2020). But other studies found 

resistance training (10 or 12 weeks, 80% 1 RM leg exer-

cises) enhanced skeletal muscle state 3 respiration in young 

and older men (Holloway et al. 2018; Pesta et al. 2011). 

It is possible that long period resistance training (at least 

10 weeks) may improve mitochondrial respiration. Moreo-

ver, long-term resistance training also increased the respira-

tory control ratio (state 3 and state 4 respiratory ratio) of 

skeletal muscle in young men (Groennebaek et al. 2018; 

Pignanelli et al. 2020; Salvadego et al. 2013). Thus, these 

data indicated that resistance training, as endurance resist-

ance training, upregulates muscle OXPHOS and improves 

the ATP production capacity.

Resistance training combined with other stresses can 

improve muscle mitochondrial remodeling greatly. In 

hypoxia, 10 weeks of resistance training upregulated mus-

cle mitochondrial coupling respiration more significantly 

than normoxia resistance training (Pesta et al. 2011). A bout 

of low-load resistance training with blood flow restriction 

increased muscle p38 MAPK and acetyl CoA carboxylase 

phosphorylation, which was identical to the results of high-

load resistance training in young men (Groennebaek et al. 

2018). Petrick et al. (2019) also found that resistance train-

ing with blood flow restriction resulted in a lower level of 

skeletal muscle tissue oxygenation than resistance training in 

young men. Thus, resistance training with hypoxia or blood 

flow restriction can aggravate cytosolic oxygen deficit and 

reduce ATP/AMP ratio dramatically, which may lead to the 

more profound mitochondrial adaptations.

To sum up, resistance training not only activates mTOR 

pathway, but also elevates skeletal muscle mitochondrial 

remodeling to varying degree in skeletal muscle.

New insight of the relationship 
between resistance training and endurance 
training

Improvement of muscle strength depends on Akt/mTOR 

signaling and ribosome biogenesis (Egerman and Glass 

2014). On the other hand, endurance training promotes 

AMPK/PGC-1α-mediated mitochondrial biogenesis in skel-

etal muscle. The AMPK/PGC-1α pathway collaborates with 

the Akt/mTOR pathway to promote the integrative develop-

ment of physiological homeostasis (Hawley et al. 2014).

Early experiment did not find resistance training inter-

fere with endurance training on the response of muscle CS 
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activity and maximum oxygen uptake (VO2max) (Sale et al. 

1990). In addition, long-term resistance training-trained 

subjects exhibited higher levels of AMPK and p38 MAPK 

activities of skeletal muscle than that in untrained subjects 

following a bout of cycling exercise (Coffey et al. 2006). 

Recent study has shown that strength-trained individuals 

exhibited increased mitochondrial cristae density and mito-

chondrial unfolded protein responses in skeletal muscle 

(Botella et al. 2023). On the other hand, a bout of high-

intensity interval exercise combined with resistance raining 

did not compromise the muscle anabolic response in men 

(Lee et al. 2024). Endurance training experience also did 

not change the rate of myofibrillar protein synthesis with 

a bout of leg extension (75% 1RM) in older men (McKen-

dry et al. 2019). Furthermore, individuals with endurance 

training experience showed a faster recovery of muscle PCr 

compared to untrained individuals after a bout of knee exten-

sion–flexion (Layec et al. 2016).

The reports above indicated that endurance or strength 

muscle phenotype resulting from its corresponding exercise 

training does not interrupt the opposite exercise training 

effect. In fact, the two types of exercise can benefit from 

each other. Therefore, our question is that whether the con-

current training, consisting of both endurance and resistance 

training, increases the mitochondrial remodeling compared 

to the single training model. Previous studies results are 

summarized in Table 1. Two sequences of concurrent train-

ing were termed as “RT–ET” (resistance training–endurance 

training order) and “ET–RT” (endurance training–resistance 

training order) for convenience.

E�ect of long-term concurrent training 
on muscle mitochondrial remodeling

Skeletal muscle mitochondrial adaptations include mito-

chondrial content, mitochondrial respiration, specific mito-

chondrial function, and other biomarkers involving aerobic 

capacity.

Lundberg et al. (2013) compared the effects of one leg 

performing RT and the opposing leg undergoing ET–RT on 

the muscle mitochondrial content in young men. They found 

that 5 weeks of ET–RT (cycling to failure and high load 

knee extensions) induced a higher level of skeletal muscle 

CS than that of resistance training, demonstrating that mus-

cle mitochondrial content can be enhanced more efficiently 

with ET–RT. Irving et al. (2015) reported the mitochondrial 

adaptations of vastus lateralis following 8 weeks of bench 

and leg press, cycling at 65% VO2max, and the concurrent 

training in the young and old men. Only the concurrent train-

ing resulted in an increase of state 3 respiration (targeting 

complex I + II) in the young or old groups. The old group 

was more sensitive to concurrent training in the complex 

I-mediated respiration improvement. In addition, concurrent 

training resulted in a greater increase of Tfam mRNA than 

either endurance training or resistance training in the sub-

jects pooled together. This suggests that concurrent training 

increases muscle mitochondrial biogenesis and respiration 

more greatly, especially enhances the mitochondrial respi-

ration in adults with aging (Irving et al. 2015). A recent 

study also supported this viewpoint. They found ET–RT 

(20 min cycling at 70% VO2max and whole-body resistance 

training) for 12 weeks had advantage of improving muscle 

mitochondrial state 3 respiration over the single resistance 

training in young and older individuals. ET–RT model even 

had the same effects of aerobic HIIT intervention on VO2max 

enhancement (Pataky et al. 2024).

In contrast, a study did not support this idea as they found 

12 weeks of endurance training (running, cycling and row-

ing) or concurrent training (endurance training, leg press, 

and knee extension) did not change the muscle CS activity 

in adults with chronic kidney disease. In addition, the two 

interventions induced a similar change of PGC-1α mRNA 

in skeletal muscle (Watson et al. 2020). This study found 

that concurrent training promoted some muscle mitochon-

drial biogenesis signals, but did not observe the effect of 

resistance training in concurrent training, which may be 

associated with the pathological process of kidney disease 

and the relatively low loads of resistance training consider-

ing the practice frequency of 2–3 times per week (Watson 

et al. 2020). The insufficient exercise load and disease may 

weaken the effectiveness of concurrent training. In addi-

tion, two studies with inconsistent results did not provide 

a detailed exercise sequence for endurance and resistance 

exercises (Irving et al. 2015; Watson et al. 2020). Therefore, 

the inconsistent results may be partially attributed to the dif-

ferent exercise orders.

In a study conducted on male mice, researchers used 

electrical stimulation to complete isometrical contraction in 

gastrocnemius (30 V and 100 Hz). The endurance training 

was treadmill running (60 min, 25 m/min). They found that 

performing resistance exercise before endurance exercise for 

3 weeks enhanced the mTOR/S6K1 signaling, CS activity, 

Tfam mRNA, and ATP synthase content in gastrocnemius, 

while performing endurance exercise before resistance exer-

cise had no effect on these markers (Shirai et al. 2020). This 

result indicated the RT–ET order is more effective than the 

ET–RT order in upregulating muscle protein production and 

mitochondrial biogenesis. In addition, RT–ET model does 

not disrupt mTOR hypertrophic signaling. However, the lack 

of a single exercise training group makes it difficult to deter-

mine whether the resistance or endurance training session 

enhances mitochondrial remodeling in concurrent training.

In summary, in long-term concurrent training, the resist-

ance training component has no deleterious effect on mito-

chondrial adaptations. Concurrent training has the potential 
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es
is

 o
f 

E
T

 W
an

g
 e

t 
al

. 
( 2

0
1
1
)

M
en

 a
n
d
 w

o
m

en
 i

n
 o

n
e 

g
ro

u
p
 

fo
r 

re
p
ea

te
d
 t

es
t:

 E
T

 a
n
d
 

E
T

–
R

T

6
 s

et
s 

×
 1

5
 r

ep
et

it
io

n
s 

(7
0
–
8
0
%

 

1
 R

M
) 

le
g
 p

re
ss

; 
6
0
 m

in
 

cy
cl

in
g
, 
6
5
%

 o
f 

V
O

2
m

ax
; 

T
w

ic
e 

V
L

 (
W

B
, 
q
P

C
R

)

E
T

–
R

T
: 

p
3
8
 M

A
P

K
, 
A

M
P

K
 

ac
ti

v
it

y
 ↑

; 
T

w
o
 g

ro
u
p
s:

 

P
G

C
-1

α
, 
P

D
K

-4
 m

R
N

A
 ↑

E
T

–
R

T
: 

m
T

O
R

 s
ig

n
al

s 
↑

E
T

–
R

T
 e

n
h
an

ce
s 

m
it

o
ch

o
n
d
ri

al
 

fu
n
ct

io
n
 m

o
re

 e
ffi

ci
en

tl
y
 t

h
an

 

E
T

 D
o
n
g
es

 e
t 

al
. 
(2

0
1
2
)

E
ig

h
t 

m
id

d
le

-a
g
ed

 m
en

 i
n
 o

n
e 

g
ro

u
p
 f

o
r 

re
p
ea

te
d
 t

es
t:

 R
T

, 

E
T

, 
an

d
 R

T
–
E

T
 g

ro
u
p
s

8
 s

et
s 

×
 8

 r
ep

et
it

io
n
s 

at
 7

0
%

 o
f 

1
 R

M
 l

eg
 e

x
te

n
si

o
n
; 

4
0
 m

in
 

cy
cl

in
g
, 
5
5
%

 V
O

2
m

ax
; 

5
0
%

 

o
f 

th
e 

R
T

 a
n
d
 E

T
 l

o
ad

s 

(R
T

–
E

T
)

R
T

–
E

T
 a

n
d
 E

T
 i

n
d
u
ce

d
 a

 

si
m

il
ar

 i
n
cr

ea
se

 o
f 

P
G

C
-1

α
 

an
d
 P

G
C

-1
β
 m

R
N

A
↑;

 R
T

 d
id

 

n
o
t 

ch
an

g
e 

th
es

e 
m

ar
k
er

s

A
ll

 g
ro

u
p
s:

 m
it

o
ch

o
n
d
ri

al
 

p
ro

te
in

 s
y
n
th

et
ic

 r
at

es
 ↑

A
cu

te
 R

T
–
E

T
 i

n
fl

u
en

ce
s 

m
it

o
ch

o
n
d
ri

al
 f

u
n
ct

io
n
 g

re
at

ly
 

th
an

 R
T

 A
p
ro

 e
t 

al
. 
(2

0
1
3
)

M
en

 i
n
 o

n
e 

g
ro

u
p
 f

o
r 

re
p
ea

te
d
 

te
st

: 
R

T
 a

n
d
 R

T
–
E

T
 g

ro
u
p
s

1
0
 s

et
s 

×
 e

x
h
au

st
io

n
 (

6
5
–
8
5
%

 

1
 R

M
) 

le
g
 p

re
ss

; 
3
0
 m

in
 

cy
cl

in
g
, 
7
0
%

 o
f 

V
O

2
m

ax
; 

T
w

ic
e 

V
L

 (
W

B
, 
q
P

C
R

)

T
w

o
 g

ro
u
p
s:

 A
M

P
K

 a
n
d
 A

C
C

 

ac
ti

v
it

y
↓;

 p
3
8
 M

A
P

K
 a

ct
iv

-

it
y,

 P
D

K
-4

, 
P

R
C

, 
P

G
C

-1
α

 

m
R

N
A

T
w

o
 g

ro
u
p
s:

 m
T

O
R

 s
ig

n
al

s 
↑

B
o
th

 R
T

 a
n
d
 R

T
–
E

T
 e

n
h
an

ce
 

m
it

o
ch

o
n
d
ri

al
 b

io
g
en

es
is

 L
u
n
d
b
er

g
 e

t 
al

. 
( 2

0
1
3
)

T
en

 y
o
u
n
g
 m

en
 p

er
fo

rm
ed

 

5
-w

ee
k
 o

f 
R

T
, 
E

T
–
R

T
 i

n
 o

n
e 

le
g
 a

n
d
 a

n
o
th

er
 l

eg

4
 s

et
s 

×
 7

 m
ax

im
al

 c
o
n
ce

n
tr

ic
–

ec
ce

n
tr

ic
 k

n
ee

 e
x
te

n
si

o
n
s,

 

2
–
3
 t

im
es

/w
ee

k
; 

cy
cl

in
g
 l

o
ad

 

w
as

 i
n
cr

ea
se

d
 u

n
ti

l 
fa

il
u
re

 i
n
 

4
5
 m

in
, 
3
 t

im
es

/w
ee

k
; 

tw
ic

e 

V
L

E
T

–
R

T
: 

C
S

 a
ct

iv
it

y
 ↑

; 
C

S
 

ac
ti

v
it

y
 o

f 
E

T
–
R

T
 w

as
 h

ig
h
er

 

th
an

 t
h
at

 o
f 

R
T

 p
o
st

-t
ra

in
in

g

O
n
ly

 E
T

–
R

T
: 

m
ea

n
 f

C
S

A
 a

n
d
 

T
y
p
e 

II
 f

C
S

A
 ↑

E
T

–
R

T
 r

es
u
lt

s 
in

 m
o
re

 m
u
sc

le
 

h
y
p
er

tr
o
p
h
y
 a

n
d
 m

it
o
ch

o
n
d
ri

al
 

co
n
te

n
t

 L
u
n
d
b
er

g
 e

t 
al

. 
(2

0
1
4
)

T
en

 y
o
u
n
g
 m

en
 p

er
fo

rm
ed

 

5
-w

ee
k
 o

f 
R

T
, 
E

T
–
R

T
 i

n
 o

n
e 

le
g
 a

n
d
 a

n
o
th

er
 l

eg

S
im

il
ar

 t
o
 t

h
e 

st
u
d
y
 a

b
o
v
e 

b
u
t 

E
T

–
R

T
 i

n
te

rv
al

 t
im

e 
w

as
 

re
d
u
ce

d
; 

th
re

e 
ti

m
es

 V
L

 

b
io

p
si

es
 (

b
ef

o
re

, 
p
o
st

-e
x
er

-

ci
se

 a
n
d
 p

o
st

-t
ra

in
in

g
)

A
cu

te
 E

T
–
R

T
: 

P
G

C
-1

α
 m

R
N

A
 

↑;
 a

cu
te

 E
T

–
R

T
 v

s 
R

T
: 

P
G

C
-1

α
 m

R
N

A
 ↑

; 
lo

n
g
-t

er
m

 

E
T

–
R

T
: 

C
S

 a
ct

iv
it

y
 ↑

O
n
ly

 l
o
n
g
-t

er
m

 E
T

–
R

T
: 

en
d
u
r-

an
ce

 p
er

fo
rm

an
ce
↑

E
T

–
R

T
 r

es
u
lt

s 
in

 m
o
re

 a
er

o
b
ic

 

ca
p
ac

it
y
 a

n
d
 m

it
o
ch

o
n
d
ri

al
 

fu
n
ct

io
n

 I
rv

in
g
 e

t 
al

. 
(2

0
1
5
)

O
ld

er
 m

en
 o

r 
y
o
u
n
g
 m

en
 i

n
 

E
T

, 
R

T
, 
an

d
 C

T
 g

ro
u
p
s 

fo
r 

8
 w

ee
k

s 
in

te
rv

en
ti

o
n

5
 t

im
es

/w
ee

k
, 
6
0
 m

in
 c

y
cl

in
g
 

at
 6

5
%

 V
O

2
m

ax
; 

4
 t

im
es

/w
ee

k
, 

b
en

ch
 a

n
d
 l

eg
 p

re
ss

; 
T

w
o
 

th
ir

d
s 

o
f 

R
T

 l
o
ad

 +
 h

al
f 

o
f 

E
T

 

lo
ad

; 
tw

ic
e 

V
L

 (
W

B
, 
q
P

C
R

)

Y
o
u
n
g
 C

T
 g

ro
u
p
: 

 C
I+

II
 a

n
d
 

 C
II
 r

es
p
ir

at
io

n
s↑

; 
O

ld
er

 C
T

 

g
ro

u
p
: 

 C
I,
  C

II
, 
an

d
  C

I 
+

 I
I,
 

re
sp

ir
at

io
n
s↑

R
T

 g
ro

u
p
: 

V
O

2
m

ax
 ↔

 ; 
E

T
 a

n
d
 

E
T

–
R

T
 g

ro
u
p
: 

V
O

2
m

ax
 ↑

C
o
n
cu

rr
en

t 
tr

ai
n
in

g
 e

n
h
an

ce
s 

m
u
sc

le
 m

it
o
ch

o
n
d
ri

al
 r

es
p
ir

a-

ti
o
n
 e

ffi
ci

en
tl

y

 J
o
n
es

 e
t 

al
. 
( 2

0
1
6
)

R
es

is
ta

n
ce

 t
ra

in
ed

 m
en

 i
n
 t

h
re

e 

g
ro

u
p
s:

 p
er

fo
rm

ed
 a

 b
o
u
t 

o
f 

R
T

, 
R

T
–
E

T
, 
E

T
–
R

T

5
 s

et
s 

×
 6

 r
ep

et
it

io
n
s 

(8
0
%

 

1
 R

M
) 

le
g
 e

x
te

n
si

o
n
 a

n
d
 

p
re

ss
; 

3
0
 m

in
 c

y
cl

in
g
, 
7
0
%

 

o
f 

V
O

2
m

ax
; 

P
re

, 
p
o
st

, 
an

d
 1

 h
 

p
o
st

-e
x
er

ci
se

 V
L

 (
W

B
)

A
ll

 g
ro

u
p
s:

 A
M

P
K

 a
n
d
 p

3
8
 

M
A

P
K

 a
ct

iv
it

y
 ↔

 

R
T

, 
R

T
–
E

T
 g

ro
u
p
s:

 S
6
K

1
 

ac
ti

v
it

ie
s 

1
 h

 p
o
st

-e
x
er

ci
se

 ↑
R

T
–
E

T
 a

n
d
 E

T
–
R

T
 e

li
ci

te
d
 

si
m

il
ar

 r
es

p
o
n
se

s 
o
f 

th
e 

A
M

P
K

 a
n
d
 m

T
O

R
 s

ig
n
al

in
g
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Ta
b

le
 1

 
 (c

o
n
ti

n
u
ed

)

S
o
u
rc

es
S

u
b
je

ct
s

R
T

, 
E

T
 d

es
ig

n
s 

an
d
 m

et
h
o
d
s

M
it

o
ch

o
n
d
ri

al
 f

u
n
ct

io
n

O
th

er
 f

u
n
ct

io
n
s

C
o
n
cl

u
si

o
n
s

 L
ay

ec
 e

t 
al

. 
( 2

0
1
6
)

T
w

o
 g

ro
u
p
: 

E
T

 t
ra

in
ed

 m
en

, 

E
T

 u
n
tr

ai
n
ed

 m
en

 a
n
d
 

w
o
m

en

6
0
 r

ep
et

it
io

n
s/

m
in

 (
2
5
%

 M
V

C
) 

k
n
ee

 e
x
te

n
si

o
n
–
fl

ex
io

n
 f

o
r 

6
 m

in
; 

M
ag

n
et

ic
 r

es
o
n
an

ce
 

sp
ec

tr
o
sc

o
p
y
 i

n
 q

u
ad

ri
ce

p
s

V
er

su
s 

u
n
tr

ai
n
ed

 g
ro

u
p
: 

tr
ai

n
ed

 

g
ro

u
p
: 

A
T

P
 s

y
n
th

es
is

 b
y
 

O
X

P
H

O
S

 ↔
 ; 

P
C

r 
re

co
v
er

y
 

ra
te

 ↑
; 

P
h
o
sp

h
o
ru

s/
o
x
y
g
en

 

ra
ti

o
 ↔

 

N
o
 d

iff
er

en
ce

 o
f 

A
T

P
 s

y
n
th

es
is

 

b
y
 a

n
ae

ro
b
ic

 m
et

ab
o
li

sm

E
T

 e
x
p
er

ie
n
ce

 c
an

 a
cc

el
er

at
e 

th
e 

A
T

P
 r

ec
o
v
er

y
 a

ft
er

 R
T

 W
at

so
n
 e

t 
al

. 
(2

0
2
0
)

M
en

 a
n
d
 w

o
m

en
 w

it
h
 c

h
ro

n
ic

 

k
id

n
ey

 d
is

ea
se

 i
n
 t

w
o
 g

ro
u
p
s:

 

E
T

, 
C

T
 g

ro
u
p
s

E
T

: 
1
2
 w

ee
k

s 
×

 3
 t

im
es

/w
ee

k
 

ru
n
n
in

g
, 
cy

cl
in

g
 a

n
d
 r

o
w

in
g
; 

C
T

: 
E

T
 +

 2
–
3
 t

im
es

/w
ee

k
, 

le
g
 R

T
 (

7
0
%

 1
 R

M
);

 t
w

ic
e 

V
L

 (
W

B
, 
q
P

C
R

)

A
ll

 g
ro

u
p
s:

  C
I–

V
 p

ro
te

in
s,

 

(N
rf

1
, 
M

fn
2
, 
T

fa
m

) 

m
R

N
A

s 
↔

 ; 
P

G
C

-1
α

 m
R

N
A

 

↑;
 A

ll
 g

ro
u
p
s 

C
S

 a
n
d
 V

D
A

C
 

p
ro

te
in

 ↔
 

/
B

o
th

 E
T

 a
n
d
 C

T
 e

n
h
an

ce
 

P
G

C
-1

α
 l

ev
el

s 
in

 k
id

n
ey

 

d
is

ea
se

 p
at

ie
n
t

 J
o
n
es

 e
t 

al
. 
( 2

0
2
1
)

M
al

e 
cy

cl
is

ts
 i

n
 o

n
e 

g
ro

u
p
 f

o
r 

re
p
ea

te
d
 t

es
t:

 R
T

, 
R

T
–
E

T
, 

R
T

–
H

II
T

 g
ro

u
p
s

R
T

: 
6
 s

et
s 

×
 8

 r
ep

et
it

io
n
s 

(8
0
%

 

1
R

M
) 

sq
u
at

s;
 E

T
: 

4
0
 m

in
 

cy
cl

in
g
, 
6
5
%

 o
f 

V
O

2
m

ax
; 

H
II

T
: 

4
0
 m

in
 c

y
cl

in
g
, 

4
5
–
8
5
%

 V
O

2
m

ax
; 

T
w

ic
e 

V
L

 

(W
B

)

In
cr

ea
se

d
 m

ag
n
it

u
d
e 

o
f 

A
M

P
K

 

ac
ti

v
it

y
 i

n
 R

T
–
E

T
 i

s 
h
ig

h
er

 

th
an

 t
w

o
 o

th
er

 g
ro

u
p
s

V
er

su
s 

R
T

: 
m

T
O

R
 a

ct
iv

it
y
 o

f 

R
T

–
E

T
 ↑

C
o
n
cu

rr
en

t 
tr

ai
n
in

g
 i

s 
m

o
re

 e
ffi

-

ci
en

t 
to

 a
ro

u
se

 m
u
sc

le
 A

M
P

K
 

ac
ti

v
it

y

 M
o
b
er

g
 e

t 
al

. 
(2

0
2
1
)

H
ea

lt
h
y
 m

id
d
le

-a
g
ed

 m
al

e 

su
b
je

ct
s 

in
 o

n
e 

g
ro

u
p
 f

o
r 

re
p
ea

te
d
 t

es
t:

 H
II

T
, 
H

II
T

–
R

T
 

g
ro

u
p
s

R
T

: 
1
0
 s

et
s 

×
 9

–
1
2
 r

ep
et

it
io

n
s 

(1
0
 R

M
 t

o
 f

at
ig

u
e)

 a
rm

 

ex
te

n
si

o
n
; 

H
II

T
: 

5
 ×

 4
 m

in
 

fa
st

 c
y
cl

in
g
, 
8
3
 ±

 3
%

 V
O

2
m

ax
; 

F
iv

e 
ti

m
es

 t
ri

ce
p
s 

b
ra

ch
ii

 

b
io

p
si

es
 (

W
B

, 
q
P

C
R

)

H
II

T
–
R

T
 v

s 
H

II
T

 g
ro

u
p
: 

P
G

C
-1

α
 m

R
N

A
 i

n
 1

8
0
 m

in
 

re
co

v
er

y
 ↑

; 
A

M
P

K
 a

ct
iv

it
y
 i

n
 

p
o
st

 e
x
er

ci
se

 ↑

/
C

o
n
cu

rr
en

t 
tr

ai
n
in

g
 i

s 
m

o
re

 e
ffi

-

ci
en

t 
to

 p
ro

m
o
te

 m
it

o
ch

o
n
d
ri

al
 

b
io

g
en

es
is

 s
ig

n
al

s

 P
at

ak
y
 e

t 
al

. 
( 2

0
2
4
)

Y
o
u
n
g
 a

n
d
 o

ld
er

 l
ea

n
 i

n
d
iv

id
u
-

al
s 

in
 H

II
T

, 
R

T
, 
an

d
 E

T
–

R
T

 

g
ro

u
p
s

1
2
 w

ee
k

s:
 3

0
 m

in
 H

II
T

, 
3
 

ti
m

es
/w

ee
k
; 

W
h
o
le

-b
o
d
y
 

R
T

, 
4
 t

im
es

/w
ee

k
; 

E
T

–
R

T
 

in
cl

u
d
in

g
 2

0
 m

in
 c

y
cl

in
g
, 

7
0
%

 V
O

2
m

ax
 a

n
d
 w

h
o
le

-b
o
d
y
 

R
T

, 
4
 t

im
es

/w
ee

k

H
II

T
, 
E

T
–
R

T
: 

M
it

o
ch

o
n
d
ri

al
 

st
at

e 
3
 r

es
p
ir

at
io

n
 ↑

; 
H

II
T

: 

M
it

o
-f

ra
ct

io
n
al

 s
y
n
th

es
is

 

ra
te

 ↑

H
II

T
, 
E

T
–
R

T
: 

V
O

2
m

ax
↑ ;

 R
T

, 

E
T

–
R

T
: 

L
eg

 p
re

ss
 1

 R
M

 ↑
H

II
T

 o
r 

E
T

–
R

T
 i

n
cr

ea
se

s 
m

u
s-

cl
e 

m
it

o
ch

o
n
d
ri

al
 r

es
p
ir

at
io

n

S
tu

d
ie

s 
in

 a
n
im

al
s

 O
g
as

aw
ar

a 
et

 a
l.

 (
2
0
1
4
)

M
al

e 
S

D
 r

at
 i

n
 fi

v
e 

g
ro

u
p
s:

 

co
n
tr

o
l,

 E
T

, 
R

T
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of amplifying the response of skeletal muscle mitochondrial 

remodeling, especially for the elderly. The order of resist-

ance training and endurance training in concurrent training 

results in specific mitochondrial responses. RT–ET order 

appears to be a favorable model for enhancing muscle mito-

chondrial biogenesis.

E�ect of a bout of concurrent training 
on muscle mitochondrial remodeling signals

Some studies have found that acute concurrent training 

efficiently promoted muscle mitochondrial remodeling. 

In a study with young healthy subjects (Men and women 

in one group), either a bout of endurance training (60 min 

cycling, 65% of VO2max) or concurrent training (ET–RT 

order, cycling and 6 sets leg press at 70–80% 1 RM) was 

performed. The ET–RT group showed more robust increases 

in PGC-1α and pyruvate dehydrogenase kinase-4 (PDK-4) 

mRNA levels of mitochondrial oxidative genes than the ET 

group. Moreover, only ET–RT promoted the phosphoryla-

tion of p38 MAPK (Wang et al. 2011). Moberg et al. (2021) 

found that cycling (high-intensity interval cycling) followed 

by upper body resistance exercise (ET–RT order, cycling and 

arm extension until fatigue) resulted in a greater elevation 

of triceps brachii PGC-1α mRNA and AMPK activity com-

pared to arm resistance exercise alone during recovery in 

men. A study conducted a cross-over design in men (trained 

cyclists with competitive experience) and found that the 

muscle AMPK phosphorylation was higher in the RT–ET 

group than that of the resistance training group (Jones et al. 

2021). Donges et al. (2012) also found that acute RT–ET 

(load of RT session was reduced by 50%) increased PGC-1α 

and PGC-1β mRNAs of skeletal muscle more greatly than 

resistance training alone (70% of 1 RM leg extension) in 

middle-aged men. In addition, Lundberg et al. (2014) found 

that acute ET–RT and RT in one leg and opposing leg 

induced distinct features in mitochondrial signals. ET–RT 

(incremental load of cycling to failure and maximal con-

centric–eccentric knee extension) induced a higher level of 

PGC-1α mRNA than that of RT. It is worth noting that the 

aforementioned studies involved 6–10 sets of 8–15 repeti-

tions (at 70–80% of 1 RM) of leg resistance training or heavy 

upper body resistance exercise. The endurance exercise 

loads consisted of constant intensity cycling or high intensity 

interval cycling at 45–85% VO2max for 40–60 min. Therefore, 

it can be inferred that a bout of concurrent training con-

sisting of moderate load resistance training and endurance 

training may lead to additional mitochondrial remodeling.

There were conflicting reports. An experiment found 

that both RT–ET (60–85% 1 RM leg press and 30 min 

cycling) and single resistance training induced similar 

upregulations of muscle mTOR/S6K1 and PGC-1α signals 

in trained men, indicating RT–ET model does not reduce 

the mTOR hypertrophic response (Apro et al. 2013). This 

study did not find that an endurance exercise session 

amplified the muscle mitochondrial biogenesis response 

in the RT–ET. The lower proportion of endurance exer-

cise load in the RT–ET may lead to the failure to harvest 

additional mitochondrial biogenesis signaling. This is pos-

sibly due to the cycling duration (30 min) and each set of 

resistance exercise being performed to exhaustion. Jones 

et al. (2016) conducted a study to test the effects of resist-

ance training, ET–RT, and RT–ET on trained men (com-

pleting > 2 years resistance training). The study found no 

significant changes of mitochondrial biogenesis markers in 

skeletal muscle before and after the exercises in all groups. 

This research concluded that an acute bout of concurrent 

training with differing sequences did not result in addi-

tional improvement of mitochondrial biogenesis (Jones 

et al. 2016). This study recruited resistance-trained young 

men and had them complete a moderate-load resistance 

training in the concurrent training. The physiological load 

of the resistance training in the resistance-trained young 

subjects may be insufficient to trigger a response in mito-

chondrial biogenesis during concurrent training.

An animal experiment compared the effects of electri-

cal stimulation-induced gastrocnemius isometrical con-

traction (30 V and 100 Hz), endurance training (60 min 

running at 25 m/min), and two concurrent training models 

on the mTOR and AMPK pathways in male SD rats. They 

found that all four interventions enhanced the mTOR/

S6K1 pathway in the gastrocnemius. However, only endur-

ance exercise, resistance exercise, and RT–ET resulted in 

AMPK activation (Ogasawara et al. 2014). The concur-

rent trainings did not promote additional mTOR or AMPK 

signaling. Considering that the interval time was 60 min 

between the two sessions in the concurrent training, the 

long interval time may weaken the whole influence of the 

two exercise sessions. This study found that ET–RT was 

superior to RT–ET in maintaining mTOR/S6K1 signaling, 

while RT–ET led to more increase of AMPK signaling 

during the recovery period. This result suggested that the 

last bout of exercise type may determine the main molecu-

lar response during recovery (Ogasawara et al. 2014).

In summary, five studies supported that concurrent 

training could amplify the muscle mitochondrial adaptive 

signals compared to the single exercise model (Donges 

et  al. 2012; Jones et  al. 2021; Lundberg et  al. 2014; 

Moberg et al. 2021; Wang et al. 2011). Two reports failed 

to observe the additional benefit of concurrent training in 

mitochondrial remodeling (Apro et al. 2013; Jones et al. 

2016), which may be due to the low load of single exercise 

model or insufficient physiological stress for the trained 

subjects in the concurrent training.



 European Journal of Applied Physiology

Overview of e�ects of concurrent training 
on muscle mitochondrial remodeling

Concurrent training can be compared to single exercise 

model to investigate the relationship between endurance 

training and resistance training on certain physiological 

functions. Studies suggest that resistance training com-

bined with endurance training do not compromise the 

mTOR/S6K1 signaling of hypertrophic response. Eight 

studies have shown that concurrent training can enhance 

the muscle mitochondrial biogenesis and respiration adap-

tations compared to the single endurance or resistance 

training (Donges et al. 2012; Irving et al. 2015; Jones et al. 

2021; Lundberg et al. 2013; Lundberg et al. 2014; Moberg 

et al. 2021; Pataky et al. 2024; Wang et al. 2011). The 

most participants in these studies were older or untrained 

young men who underwent moderate loads of endurance 

training and resistance training. The endurance training 

or resistance training load was effective in upregulating 

of muscle mitochondrial signaling in the participants. 

However, two studies in healthy individuals did not find 

any additional enhancement of mitochondrial remodeling 

signals in concurrent training (Apro et al. 2013; Jones 

et al. 2016). These studies involved a 30-min cycling and 

exhaustive resistance exercise or recruited strength-trained 

subjects in their designs. Thus, the limited physiological 

loads resulting from endurance or resistance training may 

hinder the synergistic function in the regulation of mito-

chondrial adaptation.

Mechanism of concurrent training-regulated 
muscle mitochondrial remodeling

Mechanisms of concurrent training-induced mitochondrial 

remodeling are summarized in Fig. 2. Different sequences 

of concurrent training may lead to distinctive mitochondrial 

alterations. Pre-activation of mTOR or PGC-1α signaling 

may lead to distinct alteration of mitochondrial response 

with the specific concurrent training. Although two animal 

studies supported the advantage of RT–ET over ET–RT 

in affecting muscle mitochondria (Ogasawara et al. 2014; 

Shirai et al. 2020), the compelling evidence is warranted 

to verify this viewpoint in feature studies. The underlying 

mechanism of this process may involve the activation of 

organs and muscle motor units during resistance exercise. 

When resistance training is performed, it can activate both 

fast and slow myofibers, allowing more myofibers to engage 

in the whole concurrent training, markedly stimulating mito-

chondrial oxidative response.

Other mechanisms may be involved in the interaction 

between the PGC-1α and mTORC1 pathways. In mouse 

skeletal muscle, the mTORC1 inhibitor rapamycin resulted 

Fig. 2  Mechanisms of concur-

rent training-induced mitochon-

drial remodeling. Resistance 

training does not interfere 

with endurance training’s 

phenotype. Resistance training 

preferentially promotes the 

mTOR-related hypertrophy and 

satellite cells activation, which 

may benefit the AMPK/PGC-1α 

signaling by Raptor, FTO, 

Yin-yang 1, enhanced fibers 

recruitment, and other unknown 

ways to amplify the muscle 

mitochondrial remodeling
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in decreased PGC-1α gene expression (Cunningham et al. 

2007). Two weeks of functional overload in mice promoted 

plantaris hypertrophy and mitochondrial fusion, resulting in 

an increase in mitochondrial area and Complex IV protein 

expression. The adaptations were abolished when mTORC1 

was inhibited by rapamycin (Uemichi et al. 2021). The stud-

ies aforementioned indicated that mTORC1 is required for 

muscle mitochondrial biogenesis and potentially affects 

mitochondrial OXPHOS. A potential linkage between 

mTORC1 and PGC-1α may be the transcription factor 

Yin-yang 1 identified as a common target of mTORC1 and 

PGC-1α (Cunningham et al. 2007). mTOR activates Yin-

yang 1, which subsequently promotes PGC-1α-mediated 

expression of genes related to muscle mitochondrial oxida-

tion (Cunningham et al. 2007). Muscle-specific knockout of 

Yin-yang 1 significantly reduced the content of mitochon-

drial proteins and impaired OXPHOS function in skeletal 

muscle (Blattler et al. 2012). During and post-concurrent 

training, activation of Yin-yang 1 by mTORC1 may increase 

PGC-1α and Mfn1/2 expression and enhance the response of 

mitochondrial remodeling of skeletal muscle.

Raptor, as a component of mTORC1, is required for pro-

moting skeletal muscle mitochondrial biogenesis in Akt acti-

vation conditions. Loss of Raptor resulted in reduced mito-

chondrial protein content in skeletal muscle (Baraldo et al. 

2021). Another study deleting muscle Raptor also led to the 

reduced levels of intermyofibrillar mitochondria, oxidative 

capacity, PGC-1α mRNA, and Cox4 protein of soleus mus-

cle in 90-day-old mice (Bentzinger et al. 2008). Moreover, 

the suppression of mTORC1 by Raptor knockout in muscle 

resulted in a decrease in PGC-1β mRNA (Bentzinger et al. 

2013). Both PGC-1α and PGC-1β are essential for maintain-

ing mitochondrial content and transcription of mitochondrial 

genes (Benefield et al. 2023). Conversely, muscle-specific 

deletion of TSC in mice led to the activation of mTORC1 

in skeletal muscle, which was accompanied by an increase 

in PGC-1β mRNA and the histological expression of suc-

cinate dehydrogenase and cytochrome c oxidase (Bentzinger 

et al. 2013). This means that subunit of mTORC1 positively 

affects muscle mitochondrial biogenesis through the PGC-1 

family members. The resistance training session of concur-

rent training may result in Raptor activation, which acceler-

ates muscle PGC-1 family expression through an unknown 

way, then leading to robust mitochondrial remodeling.

Other factors may mediate the relationship between 

mTOR and PGC-1α. The fat mass-and obesity-associated 

(FTO) gene is required for maintaining the mitochondrial 

content, mitochondrial DNA, and cytosolic ATP content dur-

ing muscle differentiation. Inhibition of mTORC1 by rapa-

mycin suppressed the FTO-induced PGC-1α gene expression 

during muscle differentiation (Wang et al. 2017), suggest-

ing that FTO may be involved in the regulation of PGC-1α 

by mTORC1 in skeletal muscle. Concurrent training may 

arouse FTO by mTORC1, then greatly activating PGC-1α in 

skeletal muscle, which is warranted to be verified.

Conclusions

Resistance training and endurance training elevate mTOR-

mediated hypertrophy and PGC-1α-mediated mitochondrial 

remodeling signals, respectively. Resistance training also 

increases skeletal muscle mitochondrial coupling respiration 

and biogenesis in humans. Resistance training or endurance 

training in concurrent training has the potential to enhance 

muscle mitochondrial biogenesis and respiration. In vivo, 

resistance training does not impede muscle mitochondrial 

remodeling signaling. The limitation of present study is 

that we included ten RCT studies of concurrent training in 

healthy individuals, which may not originate the compelling 

evidence to support advantage of the concurrent training in 

improving the muscle mitochondrial remodeling. In future, 

meta-analysis and other investigations on this topic need to 

be continued.

Perspectives

Concurrent training studies rarely examined the skeletal 

muscle mitochondrial dynamics and mitophagy. Mitochon-

drial biogenesis is balanced by mitophagy to maintain mito-

chondrial quantity and quality (Hood et al. 2019; Romanello 

and Sandri 2015). Mitochondrial biogenesis coordinates 

with mitochondrial dynamics to achieve muscle mitochon-

drial homeostasis, thereby attenuating metabolic dysfunc-

tions (Bragoszewski et al. 2017; Palikaras et al. 2017). It 

is unclear whether concurrent training can cause specific 

changes in mitochondrial dynamics and mitophagy.

Resistance training decreases the morbidity of cardio-

vascular disease in chronic disease populations (Ho et al. 

2012; Hurley et al. 2011; Mann et al. 2014). Mitochondrial 

dysfunction in skeletal muscle is linked to energy metabolic 

defects in patients with diabetes and heart failure (Hirai et al. 

2015; Wada and Nakatsuka 2016). Therefore, rebuilding 

metabolic homeostasis through mitochondrial remodeling 

is an essential strategy. It is necessary to investigate whether 

concurrent training yields greater benefits of the aerobic 

capacity in these patient populations.

Future studies should optimize the structure of concur-

rent training such as exercise sequence and interval time. 

Given that the mTOR signals promotes the PGC-1 family 

expression in skeletal muscle, we raise a hypothesis that 

RT–ET sequence model with proper interval time may 

enhance mitochondrial remodeling more efficiently than 

other models.
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The endurance training still has the priority for the oxi-

dative capacity improvement (Irving et al. 2015; Robinson 

et al. 2017). Although previous studies found concurrent 

training has potential to amplify the muscle mitochondrial 

remodeling, most of the studies did not match the loads of 

concurrent training with the single exercise model. If the 

physiological loads of concurrent training are equal to the 

loads of endurance training or resistance training, whether 

concurrent training has the advantage of improving mito-

chondrial remodeling is unknown.
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