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Purpose: Injury prevention is a crucial aspect of sports, particularly in high-performance settings such as elite female football. This
study aimed to develop an injury prediction model that incorporates clinical, Global-Positioning-System (GPS), and multiomics
(genomics andmetabolomics) data to better understand the factors associated with injury in elite female football players.Methods:We
designed a prospective cohort study over 2 seasons (2019–20 and 2021–22) of noncontact injuries in 24 elite female players in the
Spanish Premiership competition. We used GPS data to determine external workload, genomic data to capture genetic susceptibility,
andmetabolomic data tomeasure internal workload.Results: Forty noncontact injurieswere recorded, themost frequent of whichwere
muscle (63%) and ligament (20%) injuries. The baseline risk model included fat mass and the random effect of the player. Six genetic
polymorphisms located at the DCN, ADAMTS5, ESRRB, VEGFA, and MMP1 genes were associated with injuries after adjusting
for player load (P < .05). The genetic score created with these 6 variants determined groups of players with different profile risks
(P = 3.1 × 10−4). Three metabolites (alanine, serotonin, and 5-hydroxy-tryptophan) correlated with injuries. The model comprising
baseline variables, genetic score, and player load showed the best prediction capacity (C-index: .74). Conclusions: Our model could
allow efficient, personalized interventions based on an athlete’s vulnerability. However, we emphasize the necessity for further research
in female athleteswith an emphasis on validation studies involving other teams and individuals. By expanding the scope of our research
and incorporating diverse populations, we can bolster the generalizability and robustness of our proposed model.
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Injuries in sports, particularly among professional athletes, can
have significant physical and economic implications.1 Prognostic
factors with an established causal role in injury occurrence and
susceptibility factors (ie, genetic background) can be used to
develop innovative intervention approaches to mitigate injury
risk.2 In addition, workload monitoring has practical applications
to sports performance and injuries and has become an integral part
of an athlete management system.3 External workload (the physical
demands placed on an athlete’s body during physical activity) and
internal workload (the physiological strain on an athlete’s body)

play a crucial role in the risk of injury in sports.4 The former is
commonly measured with the Global Positioning System (GPS),
whereas the most appropriate approach for measuring internal
workload is the analysis of the metabolome (ie, changes in the
levels of specific metabolites in response to exercise).5

“Omics” are high-throughput, data-driven, holistic, and top-
down methodologies examining all the constituents in a specific
state. For instance, genomics entails the study of all genes and
metabolomics all metabolic processes. Omics data play an important
role in sports since they provide a comprehensive understanding of
the biological processes and systems underlying athletic perfor-
mance.6 In particular, omics data have the potential to provide new
insights into the complex biological mechanisms that contribute to
sports injuries and to identify novel targets for intervention.7,8

However, injuries have multiple causes and risk factors, and the
debate about which omics variables (and under which conditions) are
the most important to predict injury risk is still unresolved. Previous
studies have independently evaluated the risk associated with training
load,9 GPS,10 genomics,11 and metabolomics.12 However, their
models have not always been able to predict injuries accurately since
they have been evaluated independently. In addition, the analysis of
multifactorial conditions must be gender-specific, as there are sub-
stantial biological and injury rate differences between men and
women.13 Unfortunately, the most relevant omics variables for
women have not been established yet, as existing models are largely
geared toward men or a mixture of both genders.14

Therefore, we designed a study to obtain models exclusively
tailored for female players, integrating precise measurements of
external load, and incorporating the key features from omics data
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(genomics and metabolomics) for effective injury prevention. The
main objective of this study was to identify the factors associated with
injury risk from the monitoring of a professional women’s football
teamover 2 seasons.While the study emphasizes the development and
creation of models for female athletes, as it was trained with female
data, it also acknowledges the potential applicability of the model to
male athletes, thereby extending its relevance to both genders.

Material and Methods

Participants

We designed a prospective, longitudinal cohort study carried out by
Fútbol Club Barcelona (FCB, Barcelona, Spain). We studied 24
elite professional women football players of the first team squad of
FCB over 2 seasons, 2019–2020 and 2020–2021 (from September
15, 2019 to June 30, 2021). Usually, the players had around 9 hours
of training and 1 or 2 competitive matches per week. We collected
clinical and anthropometric data (age, gender, race, body mass
index, and fat mass) for each season. The medical team that
managed injuries, recorded them during the studied period, and
entered them into a validated electronic medical record system
(COR, version 2.0; FCB).

Ethics Approval and Informed Consent

The study was conducted according to the guidelines of the
Declaration of Helsinki15 and was approved by the local committee
of Barça Innovation Hub and the Ethics Committee of Consell
Català de l’Esport (code 012/CEICGC/2021). All participants were
informed of the risks and benefits of the study and provided their
written consent for genotyping. All personal information and
results were anonymized to ensure data confidentiality.

Injury Diagnoses

Injury diagnoses were made by the same medical physician (the
team’s doctor) with the support of the FCB medical department
during the evaluation period. Team doctors followed the same
criteria in terms of diagnosis and return-to-play decision, according
to the FCB guidelines.16 Herein, we analyzed noncontact injuries
observed in muscle, tendon, ligament, and cartilage.

Quantification of the External Load of Training
and Competition by GPS Data

We captured the external workload during training and games by
using GPS data collected with the WIMU PROTM device (Real-
track Systems, S.L.).17We preprocessed the collected data with the
SPRO Software (version 927, Realtrack Systems, S.L.), which
compiled data in RAW format and created the final variables. The
variables related to volume included: total time (in minutes); total
distance (in meters); high metabolic load distance (in meters;
defined as 25.5 W/kg − distance covered above 5.5 m/s); decelera-
tions; accelerations; player load (PL; load in arbitrary units); and
high-speed running (in meters, speeds above 18 km/h). We also
collected variables related to intensity: load (arbitrary units per
minute); distance (in minutes); high metabolic load distance per
minute; and high-speed running per minute. All these variables are
described in detail elsewhere.17

We evaluated the quality of the data by performing paired-wise
correlation plots. Concretely, we correlated the distance versus PL
before and after removing outliers (defined as those values with an

absolute value of the residual larger than 3) that were reassigned to
the expected value using a linear model.

Genotyping

We complemented the results of a previous GWAS study18 with a
comprehensive literature review to select 108 single nucleotide poly-
morphisms (SNPs) associated with muscle, tendon, and ligament
injuries. The list of SNPs, their genomic position, location within each
candidate gene, and functions are described. The genotyping process is
described elsewhere.19 Quality control measures on SNP genotyping
included Hardy–Weinberg equilibrium (P < .01), missing rate (>5%),
and lowminor allele frequency (5%).We removed 16 SNPs that failed
a quality control test and analyzed 92.

Polygenic Score

The combined influence of the multiple SNPs was calculated using a
polygenic score (PS).20 A genotype score (GS) of 2 was assigned to
the genotype “protective” for injuries, a GS of 1 to the heterozygous
genotype, and aGS of 0 to the genotype “susceptible” to injuries.We
then summed up the GS of each SNP used to create the PS.

Metabolomic Data

We quantified 69 urine metabolites by ultra-performance liquid chro-
matography–tandemmass spectrometry, as described elsewhere.21We
conduct a total of 4 assessments per season. Starting in July, followed
by 1 each quarter. Data were normalized after removing metabolites
with 0 variability (5 metabolites) and a high percentage of missing
values (3metabolites). A total of 61metaboliteswerefinally chosen for
downstream analyses. We measured each metabolite in 5 time periods
and performed a linear interpolation of the metabolites.

Statistical Analysis

Model of Risk Injury and Covariables

We tested the association between the risk of injuries and (1) work-
load, (2) genomic features, and (3) metabolomic characteristics,
with a frailty Cox model. The model included a random effect on
the player and was able to account for the repeated nature of
injuries.22 The set of covariables for the models was selected from:
(1) anthropometric variables, such as age and body mass index,
which were registered 3 times per year (July, December, and
March) and were introduced in the model as time-dependent
variables; (2) number of previous injuries, also modeled as a
time-dependent variable; and (3) period of the season, considered
as a categorical covariate (July–October, November–February, and
March–June). We used the likelihood ratio test to select the
statistically significant covariables associated with injury risk.

Injury Risk Estimation Through Frailty Cox Model

and Distributed Lag Nonlinear Models

We used the frailty Cox model with covariates to independently
assess the association between injury risk and each variable,
including training GPS features, genomic variables, and metabo-
lomic characteristics. We modeled fat mass by using a second-
order polynomial. We considered genetic polymorphisms and the
PS in the model as fixed variables, and metabolites were included
using natural splines to allow for nonlinear relationships. We
introduced the GPS variables in the model by using the distributed
lag nonlinear models (dlnm) to account for the cumulative effect of
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workload. This model captures the underlying data structure since
injuries are modeled as a recurrent event process while capturing
the heterogeneity among players through the frailty term. Intro-
ducing the effect of workload through dlnm allows combining the
magnitude of the training load and a function of the distance from
day 0 up to lagmake 27 (4wk). This model can capture the nonlinear
effects of workload on injury risk by using restricted cubic splines23

and the lag function with a linear model. We determined statistically
significant variables with the likelihood ratio test. We reported
effects as hazard ratio (HR) and their 95%CI, except for metabolites
that represented the effect (eg, log-HR), for which the risk was
provided in log-scale per 1 SD change (we standardized the
metabolite data in the preprocessing step). We used the Kaplan–
Meier estimator to compare probability curves among genotypes.

We then selected significant risk factors by stepwise elimination
to determine those to be included in the best-fitted model.24 Predictive
capacity was measured using C-index (or C-statistic).25 Overfitting
was controlled using the leave-one-out cross-validation procedure.

We performed all statistical analyses using R (version 4.2.2).
We computed the cumulative effect of PL with the crossbasis
function of the dlnm R package (version 2.4.7) and fitted frailty
Cox models with the coxph function of the survival R package
(version 3.4.0). We computed counting process data to accommo-
date time-dependent variables with the exphist and survSplit
functions of dlnm and survival packages, respectively. The com-
plete pipeline describing the reproducible R code is available at our
GitHub: https://github.com/isglobal-brge/Supplementary-Material/
blob/master/Gonzalez_2023/sportomics_sup_mat.Rmd.

Results

Participant Characteristics and Injuries

We studied 24 female players who were part of the first team of
FCB during the seasons 2019–2020 and 2020–2021. Throughout
these 2 seasons, several cases of COVID-19 were detected, and all
followed the diagnosis, monitoring, and Return to Play protocol
established by the club. In 1 case, the Return to Play was extended
by 8 weeks because of respiratory symptoms. All players followed
the nutritional recommendations of the nutritionist of the FCB
medical department. Supplementation was based on isotonic
drinks, postworkout and match carbohydrate and protein shakes,
and vitamin D and omega-3 supplements.

Table 1 summarizes the main characteristics of the studied
subjects. The most frequent type of injuries involved the muscles or
the ligaments (Table 2). The injury incidence rate per 1000 player
hours was 6.4 for games and 4.9 for training. During the 2019–
2020/2020–2021 period, 19 players (79.2%) suffered at least 1
injury. Of these, 14 (73.7%) had 1 or 2 injuries and 3 players
(15.8%) had 4 or more injuries (Figure 1).

Associations Between Injury Risk and External
Workload Variables (GPS)

To test whether GPS variables were associated with injury risk, the
model with the GPS variable was compared with the baseline
model that includes fat mass and a random effect for players
(likelihood ratio test: P = .035). A statistically significant associa-
tion between injury risk and the cumulative workload effect given
by the daily PL feature (external workload) of GPS (P = .033) was
observed (Figure 2). The HR of having an injury increased with PL
intensity and day lag (Figure 2A) and decreased for a given day for

any value of PL (effect of acute training improving physical
condition; Figure 2B). However, the HR increased if the player
kept the intensity over time (chronic load), becoming at risk after
accumulating a load of 10 days (Figure 2B). After approximately 3
weeks of keeping a constant PL of 3, the risk became statistically
significant (Figure 2C). A PL above 2 provided statistically
significant protection against injuries for a given day (Figure 2D).

Associations Between Injury and Genomic
Variables

The model comprising the random effect of the individual, the fat
mass, and the cumulative effect of PL (adjusted) was considered the

Table 1 Baseline Characteristics of the Study
Participants

Variable Overall players (N= 24)

Ancestry, n (%)

European 23 (95.8)

African 1 (4.2)

Position, n (%)

Defender 8 (33.3)

Forward 7 (29.2)

Midfielder 6 (25.0)

Goalkeeper 3 (12.5)

Age, y 26.5 (17.2–31.9)

Height, cm 1.70 (1.63–1.80)

Weight, kg 63.1 (51.4–76.0)

Body mass index, kg/m2 21.7 (19.0–25.7)

Fat mass, % 19.1 (14.4–31.1)

Note: Figures are median (and range) unless otherwise stated.

Table 2 Description of Injuries, n (%)

Variable Overall injuries (N= 40)

Type of injury

Muscle 25 (62.5)

Tendon 4 (10.0)

Muscle/tendon 2 (5.0)

Ligament 8 (20.0)

Cartilage 1 (2.5)

Side leg

Left 23 (57.5)

Right 17 (42.5)

Activity

Practice 26 (65.0)

Game 14 (35.0)

Number of injuries per player

0 5 (20.8)

1 7 (29.2)

2 7 (29.2)

3 2 (8.3)

4 2 (8.3)

5 1 (4.2)
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reference model. The SNPs’major allele frequency mean was 72.6%,
ranging from 50.0% to 93.8%. Six SNPswere significantly associated
with injury risk at a 5% level (Table 3). Overall, a protective effect
(ie, risk for the normal allele) was observed for the rare alleles of all
polymorphisms (Table 3). For instance, the presence of the MMP1

rs1799750 rare variant (denoted by −) was found to have a 2-fold
decreased risk per allele (adjusted HR of 0.46; 95% CI, 0.29–0.82).
The Kaplan–Meier curve showed that only one out of 4 individuals
with the rare allele (−) of the variant rs1799750 suffered an injury
during the observed period, while, 2 out of 3 individuals with the
normal genotype (G) had an injury (P = .008; Figure 3).

A genetic score was established using the 6 aforementioned
polymorphisms. This score allowed us to classify individuals into 3
groups based on the aggregate number of protective alleles (0–3, 4–5,
and ≥ 6; Figure 4A). The number of injuries was lower in the category
with the highest score. This score also exhibited substantial differ-
ences in the probability of having an injury (P < .001; Figure 4B).

Associations Between Injury Risk
and Metabolomic Variables

This analysis was performed on 19 individuals tested at 4 timepoints
during the 2 seasons. Our analyses revealed 3 metabolites signifi-
cantly associated with injury risk after adjusting for the PL. Beta-
alanine showed an inverse association with injury risk (P = .045),
while serotonin (P = .025) and 5-hydroxy-tryptophan (5-HTF;
P = .037) were directly associated with injury risk (Figure 4C).

Multivariate Model: Workload, Genomic,
and Metabolomic Variables

A multivariate model was built by sequentially including all the
variables significantly associated with injury risk (Figure 4D). The
baseline model considering PL had a cross-validated C-index of 65.7.
The inclusion of the 3 metabolites yielded a cross-validated C-index
of 67.4 and showed a statistically significant improvement in perfor-
mance. Even more strikingly, adding the genetic score to the PL
baseline model (ie, genetic model) improved the cross-validated C-
index to 74.4. Finally, the highest predictive capacity was reached
with the full model, including both metabolites and genetic score to
the baseline PL model (C-index = 75.7), although the difference in C-
index between the full and the PL-genetic models was not significant.

Discussion

In our study, we observed a significant association between injury
risk and cumulative workload in women football players. In
addition, 6 SNPs and 3 metabolites were found to be associated
with injury risk. Finally, our multivariate model, including work-
load, genomic variables, and metabolomic characteristics, pro-
vided a good predictive capacity of injury risk. Our model is
based on the external workload accumulation measured by GPS
technology. In agreement with our results, the accumulation of
perceived workload across training sessions has been shown to be a
strong predictor of injuries.26 However, our assessment of load is

Figure 1 — Injury events over the observation period. Injury events (diamonds) and the follow-up period (gray line) are represented for each of the
athletes during seasons 2019–20 and 2020–21.
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objective, so it lacks the internal state of fatigue that may be
captured by a subjective measure. To compensate, our injury risk
model contemplates the internal state of the athletes by assessing
their omics features.

Regarding genetic susceptibility to injury, statistically sig-
nificant associations were found with rs516115, rs162502, and
rs4903399 within genesDCN,ADAMTS5, and ESRRB, previously
associated with injury risk.27 In particular, the GG genotype of
rs516115 has been reported to have a protective effect against

injuries in the anterior cruciate ligament (ACL). Also, the VEGFA
rs699947 and the A allele have been found to protect against ACL
injuries28 and tendinopathies.29 In addition, the variant rs4903399
in ESRRB has been reported as a risk factor for rotator cuff
disease.30 Finally, the variant rs1799750 in the MMP1 gene has
been described as a risk factor for noncontact muscle injuries
since this gene is involved in maintaining and remodeling the
connective tissue extracellular matrix surrounding the muscle
cells and spindles.27 Moreover, the PS described here could help

Figure 2 — Fitted function of accumulated PL, measured by Global Positioning System, on the risk of injuries for female elite football players.
(A) Risk of injury as a function of PL levels and its lag, from 0 to 28 backward in time (cumulative effect of PL). (B) Given risk as a function of PL for a
given day (eg, lag 0). (C) Projection of the risk function for different PLs as a function of the lags. (D) Given risk as a function of lags for PL = 2. HR
indicates hazard ratio; PL, player load.
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stratify women against injuries to be eligible for personalized
training plans and exercise recommendations. In a previous study
on the same athletes, we observed an increased risk of ACL
injuries for variants in COL5A1 in relation to males.19 In the
present work, we study the effects of these variants, accounting for
the cumulative workload in females only. Further work is needed to
determine the impact of workload on sexual dimorphism in the genetic
susceptibility of injury risk, emphasizing the differences in training
plans between sexes.

In relation to metabolomic data, the most significant associa-
tions with injury risk were found for beta-alanine, serotonin, and 5-
HTP. In agreement with ours, another study has suggested that a
dietary supplement of beta-alanine may help reduce the risk of
injury by improving muscle endurance and reducing muscle
fatigue.31 Also, beta-alanine supplementation can increase the
concentration of carnosine in muscles, which can help buffer the
accumulation of hydrogen ions during high-intensity exercise. This
can delay the onset of muscle fatigue and improve muscle endur-
ance, which may also help reduce the risk of injury.31 Finally, in
agreement with our results, high levels of 5-HTP, the precursor of
serotonin, have been associated with an increased risk of injuries
since it could increase the production of serotonin in the brain.32

Moreover, high levels of 5-HTP can cause drowsiness and fatigue,
reducing alertness and reaction time.33

In our study, the most accurate injury risk predictions were
achieved with the multivariate model incorporating workload

measures, various polymorphisms, and metabolites. However, ac-
cording to the C-index, external workload and genetic predisposition
were the most significant factors influencing injury risk. This finding
has significant practical implications since collecting this information
is relatively inexpensive and noninvasive, in comparison to obtaining
metabolomic data. Additionally, workload can be routinelymonitored
using electronic devices, such as GPS, whereas genetic predisposition
only needs to be measured once.

The main limitation of our study, and in general in this field of
predictive models, is the small sample size. Nonetheless, our longitu-
dinal data improved the statistical power of studies with small sample
sizes, by enabling the examination of changes in the same individuals
over time, which increased the amount of information that could be
obtained from each participant (we analyzed more than 14,500 time
points). This reduced the variability of the data and enabled a more
accurate estimation of the effects of exposures being studied. Addi-
tionally, longitudinal data could help to account for individual
differences and to identify patterns of change that may not be apparent
in cross-sectional analyses. We highly recommend large collaborative
projects that could increase the sample size and evaluate external
validity. Future studies should consider incorporating information on
menstrual status, oral contraceptive use, and hormone levels, adhering
to established guidelines for research standards in women.

To address themultiple comparisons problem in omic studies, we
selected features based on previous literature evidence of their relation
to injury risk. This approach is suitable for targeted studies with

Table 3 Hazard Ratio of Injury Risk

SNP n (%)a Number of injuries, %a Hazard ratio 95% CI P

rs1799750 0.46 (0.29–0.82) .0078

G/G 5 (21) 12 (30)

G/– 14 (58) 26 (65)

–/– 5 (21) 2 (5)

rs699947 0.49 (0.25–0.94) .0313

C/C 8 (33) 19 (48)

C/A 9 (38) 12 (30)

A/A 7 (29) 9 (22)

rs9406328 0.46 (0.23–0.94) .0337

G/G 8 (33) 25 (62)

G/A 15 (63) 15 (38)

A/A 1 (4) 0 (0)

rs162502 0.38 (0.15–0.95) .0377

G/G 18 (75) 37 (92)

G/A 4 (17) 2 (5)

A/A 2 (8) 1 (3)

rs4903399 0.34 (0.14–0.81) .0063

C/C 14 (58) 27 (68)

T/C 8 (33) 12 (30)

T/T 2 (8) 1 (3)

rs516115 0.64 (0.09–0.68) .0235

AA 11 (46) 27 (68)

AG 8 (33) 7 (18)

GG 5 (21) 6 (15)

Abbreviation: SNP, single-nucleotide polymorphism. Adjusted effects for PL (from Global Positioning System) of
statistically significant SNPs at 5% level. The models were adjusted for fat mass and individual as random effects. Hazard
ratio provides the injury risk for the additive model. In the SNP column, the rare allele is indicated afrer “/”.
aTotal percentage might not add up to 100 because of rounding.
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specific hypotheses or limited tests, such as our study.34Our goal is to
identify relevant factors associated with injury risk, which can be
facilitated by statistical models but may have limited predictive
power. To improve prediction, we recommend using machine learn-
ing algorithms with large data sets and demonstrated omic data.

Practical Applications

Research in the field of sportomics (ie, the conjunction of sport
with any omic layer, such as genomics and metabolomics) and,
specifically, its use to predict sports injuries holds great potential
for injury prevention for athletes at every level. To our knowledge,
this is the first attempt to predict noncontact injury risk based on
GPS, genomic, and metabolomic data using longitudinal data
from female elite players who have been largely unstudied. Our
paper also uses state-of-the-art data modeling approaches to
properly deal with the complex nature of injury data and the
cumulative effect of external workload. The integration of the
proposed model in a larger cohort of players and its prospective
evaluation will likely help to improve the injury risk prediction,
ultimately benefitting injury management and prevention (the
latter including in asymptomatic athletes).

Conclusions

This study demonstrates, for the first time, that injury risk
prediction combining omics technologies with external work-
load measurements was superior to using external workload
measurements alone. We present a comprehensive model that
integrates workload, genomic variables, and metabolomic char-
acteristics, demonstrating a promising predictive capacity for
injury risk in elite female football players. However, we
acknowledge that our findings represent only the initial step
toward practical applications in real-world settings. Also, stud-
ies revolving around female players could also include other
biological variables playing a role in the specific injury risk of
females (eg, menstrual cycle).

By candidly discussing these challenges in our manuscript, we
aim to encourage the scientific community to engage in ongoing
dialogue and collaboration. This collaborative approach is essential
for refining our injury prediction model and ultimately implement-
ing it successfully in real-world sports environments. Through
continued research and validation, we aspire to contribute to the
advancement of injury prevention strategies, enhancing the well-
being and performance of athletes across the globe.

Figure 3 — Probability of injury estimated using Kaplan–Meier curves for the single-nucleotide polymorphisms that were significantly associated with
injury in the frailty Cox models adjusted for fat mass and external workload. Some genotypes were collapsed (dominant model) for the single-nucleotide
polymorphisms with low number of individuals (figures with 2 curves).
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