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Abstract

Metabolic diseases, notably obesity and type 2 diabetes (T2D), have reached alarming proportions and constitute a significant global

health challenge, emphasizing the urgent need for effective preventive and therapeutic strategies. In contrast, exercise training

emerges as a potent intervention, exerting numerous positive effects on metabolic health through adaptations to the metabolic tis-

sues. Here, we reviewed the major features of our current understanding with respect to the intricate interplay between metabolic

diseases and key metabolic tissues, including adipose tissue, skeletal muscle, and liver, describing some of the main underlying

mechanisms driving pathogenesis, as well as the role of exercise to combat and treat obesity and metabolic disease.
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INTRODUCTION

The growing prevalence of metabolic diseases, including

obesity, type 2 diabetes (T2D), and hypertension, among
others, has reached alarming proportions in recent decades,

becoming a global burden (1). Specifically, regarding obesity
and type 2 diabetes, it is estimated that more than 650 mil-

lion adults worldwide have obesity (body mass index � 30

kg/m2), and over 537 million adults are living with type 2 dia-
betes (2, 3). Substantial evidence has shown that sedentary

behavior or insufficient levels of physical activity are key fac-
tors involved in the development of metabolic diseases and

contribute to shortened life expectancy (4–6).
Exercise training has a central role in the prevention and

treatment of chronic diseases, including obesity and T2D.

There are numerous beneficial effects and adaptations of

exercise for metabolic health including, but not limited to,
improvements in glucose tolerance, insulin sensitivity, redox

health, adaptations to the gut microbiota, and reduced
inflammation (7–10). Furthermore, positive adaptations to

exercise are observed in several metabolic tissues, notably in
skeletal muscle, adipose tissue, and liver (11). In this review,

we will discuss the relationship between obesity and type 2

diabetes, how these conditions affect metabolic tissues, and
how exercise-induced adaptations in the adipose tissue, skel-

etal muscle, and liver improvemetabolic health.

THE RELATIONSHIP BETWEEN OBESITY AND

TYPE 2 DIABETES AND THE EFFECTS OF

EXERCISE

It is well established that there is a significant relationship
between obesity and the development of insulin resistance

in peripheral tissues and, consequently, type 2 diabetes.
There are several proposedmechanisms involved in this pro-

cess, including inflammation, increased levels of free fatty
acids in the circulation, and mitochondrial dysfunction, all

of whichmay play an important role.
In contrast, there are numerous adaptations in response

to exercise that can combat obesity and metabolic disease.

This includes improvements in blood pressure, circulating

lipid profile, inflammatory profile, cardiorespiratory fit-
ness, and cardiovascular biomarkers, among others (12–

15). Specifically regarding obesity, exercise training is con-
sidered an effective strategy for weight and adiposity man-

agement, and it is associated with a reduction in body
mass, adiposity, and cardiometabolic risk factors (16–18). In

addition, regular physical activity has a profound impact on
diabetes management and it is associated with enhanced in-

sulin sensitivity, pancreatic b-cell function, and improved
whole body glucose metabolism (13, 19–21), which directly

promotes the improvement of glycemic control (7, 22).
The positive benefits observed with regular physical activity

and exercise, especially those related to improvement inmeta-
bolic health aspects, occur primarily through adaptations to

the adipose tissue, skeletal muscle, and liver. Therefore, in the
next sections, we will describe the main mechanisms linking

obesity, insulin resistance, and type 2 diabetes in peripheral
tissues, and define some of the main exercise-induced adapta-

tions to these metabolic tissues with a focus on their preven-
tive and therapeutic role inmetabolic health.

ADIPOSE TISSUE

Adipose tissue is a highly dynamic tissue and has impor-
tant functions, including energy storage in the form of
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triglycerides, protection against mechanical stress, the

release of hormones and energetic substrates, among others

(23). Adipose tissue can be broadly classified into two differ-

ent types: white adipose tissue (WAT), whose primary func-

tions are energy storage and insulation, and can be

subdivided into subcutaneous WAT (scWAT) and visceral

WAT (vWAT); and brown adipose tissue (BAT), which is a

metabolically active tissue involved in thermogenesis by

uniquely expressing uncoupling protein 1 (UCP1) (24–27).

Adipose Tissue, Obesity, and Inflammation

Obesity is a chronic and complex disease characterized

by an abnormal or excessive accumulation of adipose tis-

sue. The increase in WATmass, especially vWAT, is closely

associated with the development of insulin resistance in

metabolically hormone-responsive tissues, such as skele-

tal muscle, liver, and adipose tissue itself (28, 29). In addi-

tion, an excessive amount of WAT is associated with the

release of free fatty acids, glycerol, several proinflammatory

cytokines and chemokines, hormones, and other factors that

are closely involved in the development of insulin resistance

(30, 31).
The mechanisms linking obesity to insulin resistance and

predisposition to T2D are numerous. One proposed mecha-

nism is obesity-related inflammation. Adipose tissue con-

tains multiple immune cells that together maintain the

integrity and hormonal sensitivity of adipocytes (32). A class

of immune cells present in adipose tissue are macrophages,

which are critical contributors to inflammation and insulin

resistance. In obesity, the number of adipose tissue macro-

phages increase and comprise up to 40% of all adipose tissue

cells, which can be seen histologically by the formation

of crown-like structures, consisting of macrophages sur-

rounding dead adipocytes (33). Adipose tissue macrophages

(ATMs) can be either pro- or anti-inflammatory and are typi-

cally termed as M1-like or as M2-like, respectively (34). The

terms M1-like and M2-like are used to generally depict the

proinflammatory state of recruited ATMs versus the anti-

inflammatory state of resident ATMs (35). The M2-like ATMs

secrete anti-inflammatory cytokines such as interleukin-10

(IL-10) and contribute to themaintenance of insulin sensitiv-

ity and adipose homeostasis (36, 37). Conversely, M1-like

ATMs secrete proinflammatory cytokines including tumor

necrosis factor-alpha (TNF-a), IL-1b, and IL-6 (36). In addi-

tion, the adipose tissue itself also secretes several proinflam-

matory adipokines/cytokines including TNF-a, IL-6, among

many others, which leads to activation of classical inflamma-

tory signaling such as c-Jun amino-terminal kinase (JNK) and

nuclear factor-κB (NF-κB) pathways in different peripheral in-

sulin-sensible tissues (30, 38, 39). Thus, the increase in the

number of macrophages, as well as increased proinflamma-

tory adipokines secreted, are hallmarks of the adipose tissue

inflammation that accompanies obesity and is associated

with the development of insulin resistance andmetabolic dis-

ease (32, 33, 38).

Adipose Tissue, Free Fatty Acids, and Insulin Resistance

A relevant mechanism linking obesity, insulin resistance,

and T2D is the increased release of free fatty acids (FFA) in the

circulation by adipose tissue. Under physiological conditions,

insulin promotes the increase of glucose uptake, triglyceride

synthesis, and repression of lipolysis, a process resulting in the

hydrolysis of triglycerides into FFA and glycerol that are

released into the circulation (40). However, once the adi-

pose tissue expands, as in cases of obesity, excess lipids

and toxic lipid metabolites including FFA, diacylglycerol,

and ceramide accumulate in other metabolic tissues, lead-

ing to ectopic fat deposition and lipid-induced toxicity

(lipotoxicity), and development of insulin resistance in

muscle and liver (41, 42). It has been shown that individu-

als with obesity and T2D have elevated FFA levels in circu-

lation (43, 44), and it is known that circulating FFAs cause

insulin resistance in a dose-dependent manner in skeletal

muscle and liver (45). The insulin resistance in these pe-

ripheral tissues caused by increased levels of FFA will con-

tribute to the loss of glycemic homeostasis.

Mitochondrial Dysfunction and Insulin Resistance, and
Adipose Tissue

Mitochondria are highly dynamic intracellular organelles

with multiple essential functions and play a critical role in

energy metabolism. The key function of mitochondria is cel-

lular respiration, which involves various processes, includ-

ing activities of mitochondrial electron transport chain

complexes and substrate oxidation through the tricarboxylic

acid cycle, b-oxidation, ketogenesis, ATP synthesis, and reac-

tive oxygen species (ROS) formation (46–49). An important

mechanism linking obesity to diabetes is mitochondrial dys-

function, which leads to impairments in insulin sensitivity

in target tissues and compromises pancreatic b-cell function

(50). Mitochondrial dysfunction is a broad term that has

been used to refer to numerous mitochondrial phenotypes,

including decreased respiratory capacity and ATP produc-

tion, reduced mitochondrial number, accumulated mito-

chondrial damage due to defects in mitophagy, and altered

morphology resulting from changes in mitochondrial fis-

sion-fusion dynamic (51). In fact, growing evidence strongly

supports the association of reduced mitochondrial function

and an increase of reactive oxygen species leading to oxida-

tive stress, particularly in insulin-responsive tissues such as

skeletal muscle, white adipose tissue, and the liver (52–54).

Particularly in adipose tissue, the mitochondrial number

and activity determine the critical threshold at which FFA

are released into circulation and exert their lipotoxic effects,

promoting insulin resistance in peripheral tissues (46).

Clinical and preclinical studies have also shown a reduction

in white adipose tissue mitochondria content and activity in

obesity and type 2 diabetes (55–57).

Exercise-Induced Adaptations to White Adipose Tissue

Regular physical activity and exercise have important

effects on adipose tissue morphology and function, includ-

ing distinct changes in WAT and BAT. Regarding WAT, exer-

cise can decrease adipocyte size and reduce lipid content in

rodents, resulting in decreased adiposity (58, 59). In addi-

tion, exercise increases lipolysis and free fatty acid mobili-

zation, which is important to provide metabolic substrate

for increased energy demand during exercise, especially

during low- to moderate-intensity activities and increased

duration. Increased lipolysis is observed during bouts of
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both endurance and resistance exercise in nonobese indi-

viduals and in individuals with obesity (60, 61).
Exercise increases mitochondrial activity and increases the

expression of several important metabolic proteins in white
adipose tissue, including glucose transporter type 4 (GLUT4)

and peroxisome proliferator-activated receptor c coactivator 1-
a (PGC1a) (58, 62, 63). Exercise training, even performed over a
short period (2 wk), improves adipose tissue metabolism,

including increases in glucose uptake in subcutaneous WAT
and visceral WAT in both healthy and insulin-resistant indi-
viduals (64). Moreover, exercise training-induced decreases in

adipocyte size and lipid content and increases in GLUT4 and
PGC1a expression have been reported in both scWAT and
vWAT (59, 65, 66). Fundamentally, several of these metabolic

adaptations to adipose tissue can take place independently of
significant weight loss showing that adipose tissue can be an
important contributor to metabolic health, regardless of alter-

ations in body weight (66). In rodents, exercise training at
room temperature induces a “beiging” of scWAT, character-
ized by increased thermogenic and mitochondrial genes and

the presence of adipocytes withmultilocular lipid droplets (58,
67, 68), although this is not seen when mice are exercised at
thermoneutrality. Most human studies indicate that there is

no exercise-induced beiging of scWAT in humans (69–71).
Some beneficial effects of exercise can be mediated by tis-

sue-to-tissue communication, as observed in adipose-muscle
tissue cross talk (72). For instance, our laboratory has reported

that transplantation of scWAT from exercise-trained donor
mice into sedentary recipient mice results in improved glu-
cose homeostasis in the recipient mice (58, 73); and, more

recently, transforming growth factor-b2 (TGF-b2) has been
identified as the adipokine responsible for the beneficial
effects of exercise on glucose metabolism (74), demonstrating
that training-induced changes in adipose tissue may have im-

portantmetabolic effects on overall metabolic health.

Effects of Exercise on Brown Adipose Tissue

BAT is a metabolically active tissue that burns lipids and
carbohydrates to generate heat, and it is characterized by a

high density of mitochondria, multilocular lipid droplets, and
high expression of the thermogenic protein uncoupling pro-
tein 1 (UCP1) (24, 75). Several investigations have examined
the effects of exercise training on BAT, with conflicting

results. For example, some studies have demonstrated that
exercise increases BAT activity (76–78), whereas others indi-
cate that exercise decreases mitochondrial activity in BAT

(79–81). Recently, a human randomized controlled trial inves-
tigated the effects of a 24-wk exercise intervention combining
resistance and endurance training in young sedentary adults.

Despite a reduction in adiposity and enhanced muscular and
cardiorespiratory fitness, exercise has no effect on BAT vol-
ume activity in young sedentary adults (82). Further studies

need to be performed to clarify the putative effect of exercise
training on BAT activity.

Although exercise does not seem to affect BAT volume
or the ability of BAT to take up glucose, recent studies

have identified an important role for exercise to promote
the endocrine function of BAT through the release of bato-
kines. The term batokines refers to BAT-derived mole-

cules, which encompass a variety of signaling molecules
including peptides, metabolites, lipids, or microRNAs, and

can affect the physiology of a variety of organ systems and

cell types (83). A study from our research group has identi-

fied the lipokine 12,13-dihydroxy-9Z-octadecenoic acid

(12,13-diHOME), which is secreted from BAT in response to

exercise in humans and mice and increases skeletal mus-

cle fatty acid uptake and oxidation (72) and cardiac func-

tion (84).

Exercise, Obesity, and Adipose Tissue

Although adipose tissue is directly linked to the detrimen-

tal effects of obesity on metabolic health, exercise plays a cru-

cial role in managing these negative effects in this tissue.

Exercise exerts significant effects on both white and brown

adipose tissue that combat the development of obesity and

metabolic disease. In WAT, the exercise-induced adaptations

include decreasing adiposity and inflammation and increased

lipolysis, insulin sensitivity, and enhanced metabolic activity.

In BAT, exercise has an important role in promoting its endo-

crine function through releasing batokines that can mediate

some of the positive effects of exercise (Fig. 1).

SKELETAL MUSCLE

Skeletal muscle makes up �40% of the total body mass in

mammals and accounts for �30% of the resting metabolic

rate in adult humans (85). In healthy individuals, muscle

accounts for around 80% of glucose disposal under insulin-

stimulated conditions, as it occurs in the postprandial state

(86). Skeletal muscle is considered the main tissue responsi-

ble for whole body insulin-stimulated glucose disposal and

themajor site of peripheral insulin resistance (87).

Skeletal Muscle, Obesity, and Inflammation

There are several mechanisms for the development of obe-

sity-induced insulin resistance in skeletal muscle, and

inflammation has been proposed to play a role. Growing evi-

dence indicates obesity-induced inflammation occurs in

skeletal muscle through proinflammatory pathways activa-

tion with increased immune cell infiltration, particularly

macrophages and T lymphocytes (88, 89). In addition, obe-

sity is associated with increased muscle inflammatory gene

expression and may alter the secretion of different cyto-

kines/myokines (90–92). Similar to visceral fat, muscle mac-

rophages are increased in obesity in the intermyocellular/

intermuscular adipose tissue (IMAT) between the muscle

fibers and in perimuscular adipose tissue (PMAT) (89). These

IMAT and PMAT macrophages exhibit a proinflammatory,

M1-like phenotype, and contribute to higher levels of proin-

flammatory cytokines, such as TNFa, IL-6, IL-1b, and C-C

motif chemokine 2 (CCL2)/monocyte chemoattractant protein

(MCP)-1 in skeletal muscle (93). Thus, in obesity, through the

secretion of proinflammatory molecules, immune cells may

induce myocyte inflammation, adversely regulate myocyte

metabolism, and contribute to local and systemic insulin re-

sistance (35, 88, 94).

Skeletal Muscle, Mitochondrial Health, and Insulin
Resistance

Mitochondria are particularly important for skeletal mus-

cle function given the high oxidative demands imposed on
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this tissue by intermittent contraction (47). Mitochondrial
health is essential for the proper function of skeletal muscle
and metabolic health, and a decline in skeletal muscle mito-
chondrial content and function is associated with insulin re-
sistance and observed in patients with obesity and type 2
diabetes (46, 95–100), leading to the hypothesis that skeletal
muscle mitochondrial dysfunction might be responsible for
the development of insulin resistance (101, 102). However,
conflicting studies have not observed a reduction in skeletal

musclemitochondria content or function in patients with in-
sulin resistance (103–105). Thus, whether alterations in skel-
etal muscle mitochondria are a cause or consequence of
insulin resistance remain an important topic of discussion
(106, 107), the role of mitochondria to contribute to meta-
bolic health is essential. A more comprehensive discussion
regarding skeletal muscle mitochondria and insulin resist-
ance is reviewed elsewhere (106, 108, 109).

Exercise-Induced Adaptations to Skeletal Muscle

Regular physical activity and exercise lead to numerous
adaptations in skeletal muscle and promote many health
benefits, playing a pivotal role in glycemic control and meta-
bolic homeostasis. A well-recognized and important adapta-
tion in skeletal muscle led by exercise is allowing the muscle
to becomemore efficient in generating ATP (11, 110).

In addition, exercise training, especially aerobic exercise

training, augments muscle mitochondrial density and func-
tion, as well as induces changes in organelle composition
(85, 111, 112). For instance, it is well established that 6 wk of
aerobic training can increase 50–100% muscle mitochon-
drial content (113), and training volume and exercise inten-
sity are key determinants of training-induced increases in
mitochondrial content and respiration (114). These skeletal
muscle exercise-induced adaptations are a hallmark of

exercise training and directly contribute to better sub-
strate utilization capacity during exercise, i.e., a decrease
in carbohydrate utilization and oxidation and lactate pro-
duction, and an increase in fat oxidation (110) and insulin
sensitivity (115, 116).

The improvement in glycemic homeostasis is a hallmark
adaptation of exercise. Exercise training enhances muscle
glucose uptake and increases GLUT4 translocation and expres-
sion (115, 117). Themechanisms involved in howmuscle contrac-
tion/exercise increases GLUT4 translocation and expression are
complex and are regulated by a combination of several factors,
including 50-AMP-activated protein kinase (AMPK), Ca2þ /cal-
modulin-dependent protein kinase II (CaMKII), and RAS-related
C3 botulinum toxin substrate 1 (RAC1), among others (117, 118)

for GLUT4 translocation; and activation or inhibition of
enhancer and repressor transcription factors upon solute carrier
family 2member 4 (SLC2A4) (gene that codifies GLUT4 protein)
(117, 119–121). Importantly, the improvements in glucose metab-
olism and increases in muscle GLUT4 content after exercise
training have been showed not only in healthy individuals but
also in individuals with T2D (122–124).

Exercise-Released Myokines

An important skeletal muscle adaptation is increasing the
release of myokines into circulation, which could mediate
some of the beneficial effects of exercise via muscle-organ
cross talk with other tissues (125, 126). Myokines are mole-
cules that are produced, expressed, and released by muscle
and exert either autocrine, paracrine, or endocrine effects in
target tissues (127). Exercise promotes the release of several
myokines that mediate or alter the metabolic function of

other tissues, including adipose tissue, liver, bone, brain,
among others (128, 129). Currently, several myokines are
described as involved in exercise adaptation, and some of
them are proposed to facilitate the anti-inflammatory effects
of exercise and, therefore, critically counteract insulin resist-
ance and the metabolic dysfunction observed in obesity and
type 2 diabetes (130). For example, the first to be discovered
and one of the most studied myokine is IL-6 (131, 132).
Exercise increases the muscle IL-6 expression and secretion

in a muscle-contraction proportional manner, particularly
when muscle glycogen content is depleted (125, 127). It has
been shown that the myokine IL-6 mediates the exercise-
associated anti-inflammatory effects both acutely with each

Figure 1. The effects of obesity and type 2 diabetes or exercise on adipose tissue. BAT, brown adipose tissue; GLUT4, glucose transporter type 4; WAT,

white adipose tissue. Figure created with Biorender.com.
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bout of exercise and as a consequence of training adaptation,

including reduction in visceral adipose tissue mass (128,

133). A comprehensive list of exercise-regulated myokines is

reviewed elsewhere (128, 134).

Exercise, Obesity, and Skeletal Muscle

Exercise promotes several positive adaptations in skeletal

muscle. These adaptations include increased mitochondrial

activity and content, enhanced insulin sensitivity and glu-

cose uptake, and reduced inflammation, all of which are

impaired in obesity. Moreover, exercise induces the release

ofmyokines, which act asmediators of intertissue communi-

cation and contribute to the overall metabolic benefits of

exercise (Fig. 2). Thus, exercise not only enhances the func-

tion of skeletal muscle but also exerts important systemic

effects, playing an essential role in combating the negative

effects of obesity and type 2 diabetes on metabolic health,

acting as a potent therapeutic tool.

LIVER

The liver is one of the main metabolic organs and its dys-

regulation plays an important role in the development of in-

sulin resistance and type 2 diabetes. The liver is responsible

for the majority source of endogenous glucose production

which, under normal postprandial rise in insulin levels, is

reduced by activating hepatic glycogen synthesis and sup-

pressing glycogenolysis and gluconeogenesis (4).

Liver, Obesity, and Inflammation

Obesity-induced inflammation may also be observed in

the liver. When the liver is insulin resistant, the inhibitory

effects of insulin are impaired whereas the stimulatory effect

of the hormone on lipogenesis remains intact, contributing

to the development of hyperglycemia and hepatic steatosis

(32, 36). Similar to adipose tissue, obesity is associated with

increased hepatic inflammation and macrophages are the

major source of the proinflammatory cytokines. There are

two major forms of macrophages in the liver: Kupffer cells

(KCs) and recruited hepatic macrophages (RHMs) (35). In
obesity, the number of KCs are relatively unchanged, but
there is a large increase in RHMs, which are predominantly
proinflammatory (34). Although both KCs and RHMs are
highly heterogeneous, RHMs express higher levels of M1-like
polarized macrophage markers and proinflammatory gene
expression, which is exacerbated in obesity (93). Neutrophils
are another cell type that accumulates in the liver during

the process of obesity and can participate in hepatic
inflammation (135). Therefore, obesity is associated with
increased recruitment and activation of liver macro-
phages, increased inflammatory signaling, and local pro-
duction of inflammatory cytokines and chemokines,
particularly the chemokine C-C motif chemokine 2 (CCL2),
that can exert paracrine effects generating insulin resist-
ance in hepatocytes (136, 137).

Effects of Exercise on the Liver

Exercise has an important role to improve metabolic
health and leads to several adaptations in metabolic tissues,
including the liver. Considering the liver has a central role in
endogenous glucose production and represents a key site
involved in the development of insulin resistance and type 2
diabetes, a significant amount of literature has focused on
the effects of exercise upon regulation of glycemic control

and insulin sensitivity. An important exercise adaptation to
the liver is to enhance the impaired insulin-induced sup-
pressor effect upon hepatic glucose production in individu-
als with impaired glucose tolerance (138, 139). This is
especially important to individuals with type 2 diabetes.
Therefore, exercise training promotes an enhanced hepatic
insulin sensitivity in individuals with obesity (140–142) and
improved hepatic insulin sensitivity and suppression of he-

patic glucose production in individuals with type 2 diabetes
(143, 144).

As outlined earlier, obesity and type 2 diabetes are associ-
ated with increased deposition of intrahepatic lipids that can
lead to nonalcoholic fatty liver disease (NAFLD) (145). In

Figure 2. The effects of obesity and type 2 diabetes or exercise on skeletal muscle. GLUT4, glucose transporter type 4. Figure created with

Biorender.com.
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contrast, exercise training can effectively reduce intrahe-

patic lipids across multiple populations including individu-

als with obesity (146, 147), type 2 diabetes (148), and NAFLD

(139, 149, 150). Also, the beneficial effects of exercise on

reduction in intrahepatic lipids have been observed follow-

ing different exercise interventions, such as aerobic exercise

training, high-intensity intermittent exercise, combined

training, among others (151, 152). It is important to mention

that the reduction in intrahepatic lipids as an exercise adap-

tation can be realized in the absence of weight loss, although

it is more powerful when significant weight loss is induced

(152, 153). Exercise training also leads to increased hepatic

fatty acid oxidation, improved mitochondrial function, and

increases in other associated mitochondrial outcomes such

as beta-hydroxyacyl-CoA dehydrogenase (b-HAD) activity,

cytochrome c content, citrate synthase activity, among

others in the liver (153).

Exercise-Released Hepatokines

Another relevant role of exercise is promoting the secre-

tion of hepatokines into blood, which can mediate meta-

bolic adaptations to exercise training via liver cross talk

with other tissues. Emerging data have identified a signifi-

cant portion of hepatokines responsive to exercise inter-

vention, but only a few have been functionally linked to

the metabolic effects of exercise (10, 154). One of the hepa-

tokines gaining increasing attention due to its potential

role in mediating metabolic adaptations to exercise train-

ing is fibroblast growth factor 21 (FGF21). Several studies

have demonstrated therapeutic benefits of FGF21 for obe-

sity-related metabolic disorders, including the reduction

in adiposity and improvement in insulin resistance,

NAFLD, among others (155, 156). Clinical and preclinical

studies have shown that circulatory levels of FGF21 are

increased after acute exercise, whereas decreased after

chronic exercise training (�4 wk), due to increased FGF21

sensitivity in adipose tissue, liver, and skeletal muscle

(157). It has been suggested in mice that the beneficial

effects of exercise—such as the alleviation of obesity-

associated insulin resistance, glucose intolerance, and ec-

topic lipid accumulation—are abrogated in adipocyte-spe-

cific b-klotho (FGF21 receptor) knockout (158), suggesting

the important role of FGF21 in mediating the metabolic

benefits of exercise (154, 158). A list including other exer-

cise-induced hepatokines related to metabolic diseases is

reviewed elsewhere (159, 160).

Obesity, Exercise, and the Liver

Exercise is a potent modulator of hepatic function, leading

to key adaptations that enhance metabolic health. The exer-

cise-induced adaptations include enhancement in hepatic in-

sulin sensitivity, effectively suppressing endogenous glucose

production and reduction in intrahepatic lipid accumulation.

These effects lead to improvements in hepatic lipid oxidation

and mitochondrial function and counteract the general

effects of obesity on hepatic function. Furthermore, exercise

induces the release of hepatokines, which mediate some posi-

tive metabolic adaptations and contribute to the systemic

benefits of exercise. Future research in this field is needed to

elucidate the mechanisms, along with the physiological and

clinical implications of exercise-released hepatokines (Fig. 3).

EFFECTS OF EXERCISE IN PATIENTS WITH A

GENETIC PREDISPOSITION TO OBESITY

In addition to environmental factors, genetics signifi-

cantly contribute to the development of obesity, with herit-

ability estimates between 40% and 70% (161). Physical

exercise has also been considered a critical preventative tool

in people with a genetic predisposition to metabolic disease.

For instance, in patients with a genetic predisposition to obe-

sity, exercise interventions can improve cardiorespiratory

fitness and muscle strength, alter the biochemical profile

(glycemia, lipid profile, and inflammatory markers), and

reduce body weight (162, 163). Moreover, important popula-

tional studies have shown an inverse association between

physical activity and risk for obesity, where increasing

Figure 3. The effects of obesity and type 2 diabetes or exercise on liver. Figure created with Biorender.com.
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physical activity can help attenuate the genetic predisposi-

tion to obesity (164, 165). A recent study involving over 3,000

participants has found that people with an increased genetic

risk of obesity require more exercise (2,300 extra steps per

day) tomitigate the risk of obesity (166).

LIMITATIONS

Exercise and metabolic disease encompass broad fields of

study, and some of the significant topics had to be summar-

ized or even omitted to be within the scope of this review.

For example, the discussion on mitochondrial metabolism

and dysfunction was condensed, emphasizing their roles in

exercise and insulin resistance. In addition, the genetic pre-

disposition tometabolic disease and the role of exercise were

only minimally discussed. Furthermore, only a select num-

ber of signaling molecules, such as adipokines, batokines,

myokines, hepatokines, and exerkines, and their role in met-

abolic disease/health were included in this review.

CONCLUSIONS

In summary, several studies have shown how metabolic

diseases, particularly obesity and type 2 diabetes, negatively

impact metabolic health. Conversely, exercise training

emerges as a pivotal preventive and therapeutic strategy

with numerous positive effects, exerting profound influen-

ces across metabolic tissues. The exercise-induced beneficial

adaptations in adipose tissue, skeletal muscle, and liver

include enhanced lipolysis, mitochondrial activity, insulin

sensitivity, glucose uptake, and reduction of intrahepatic lip-

ids, directly contributing to the improvement of glycemic

homeostasis. Furthermore, exercise-induced adaptations

can be mediated by the release of molecules from metabolic

tissues, termed exerkines, including adipokines from white

adipose tissues, batokines from brown adipose tissue, myo-

kines from skeletal muscle, and hepatokines from the liver.

These molecules act through endocrine, paracrine, and/or

autocrine pathways, facilitating tissue-to-tissue communica-

tion. Future research needs to be done to better understand

the molecular mechanisms involved in the beneficial exer-

cise-induced adaptations, and the exploration of exerkines

presents a promising avenue for understanding and optimiz-

ing the therapeutic potential of exercise inmetabolic health.
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