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Abstract

The discovery that contracting skeletal muscle generates reactive oxygen species (ROS) was first reported over 40 years ago. The prevailing

view in the 1980s was that exercise-induced ROS production promotes oxidation of proteins and lipids resulting in muscle damage. However, a

paradigm shift occurred in the 1990s as growing research revealed that ROS are signaling molecules, capable of activating transcriptional activa-

tors/coactivators and promoting exercise-induced muscle adaptation. Growing evidence supports the notion that reduction-oxidation (redox)

signaling pathways play an important role in the muscle remodeling that occurs in response to endurance exercise training. This review examines

the specific role that redox signaling plays in this endurance exercise-induced skeletal muscle adaptation. We begin with a discussion of the

primary sites of ROS production in contracting muscle fibers followed by a summary of the antioxidant enzymes involved in the regulation of

ROS levels in the cell. We then discuss which redox-sensitive signaling pathways promote endurance exercise-induced muscle adaptation and

debate the strength of the evidence supporting the notion that redox signaling plays an essential role in muscle adaptation to endurance exercise

training. In hopes of stimulating future research, we highlight several important unanswered questions in this field.

Keywords: Antioxidants; Mitochondrial biogenesis; Radicals; Redox signaling

1. Introduction

The term oxidative stress was coined by Helmut Sies1 in

1985 and was originally defined as “the imbalance between

oxidants and antioxidants in favor of the oxidants, potentially

leading to cellular damage.” In this context, oxidant-mediated

damage was commonly documented by the appearance of

oxidized cellular components (e.g., oxidized proteins and/or

biomarkers of lipid peroxidation). The first evidence that

endurance exercise promoted oxidative stress in humans was

reported in 1978.2 This ground-breaking observation revealed

that prolonged submaximal exercise is associated with

increased lipid peroxidation; nonetheless, the cells responsible

for this exercise-induced oxidant production were unclear.2

Four years later, Davies et al.3 discovered that contracting

skeletal muscles produce free radicals, and this important

finding was quickly confirmed by an independent study

demonstrating that skeletal muscle contractions promote both

radical production of and damage to rodent muscle fibers;

these observations were later confirmed in both rodent and

human skeletal muscles.4�6 Collectively, these milestone

studies launched the field of exercise and muscle reduction-

oxidation (redox) biology.

Although Davies Q2X X et al.7 hypothesized that contraction-

induced radical production provides a stimulus for exercise-

induced muscle adaptation, the prevailing view in the 1980s

was that exercise-induced radical production promotes muscle

damage. However, a paradigm shift occurred in the 1990s as

accumulating evidence revealed that reactive oxygen species

(ROS) are signaling molecules, capable of activating transcrip-

tional activators and promoting cellular adaptation.7 This

notion was highlighted in a seminal review detailing the
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evidence that ROS can stimulate transcriptional activators to

promote protein synthesis.8 Studies during the past decades

have improved our understanding of the mechanisms behind

exercise-induced redox signaling. More specifically, recent

advances in methodology have significantly expanded our

knowledge of the molecular interactions between ROS with

redox-sensitive targets in cells. Therefore, this review provides

a current synopsis of our present understanding of the sources

of muscle contraction-induced ROS production and the roles

that ROS play as signaling molecules to promote endurance

exercise-induced adaptations in skeletal muscles. Because

hydrogen peroxide (H2O2) is recognized as a major ROS in

redox regulation of cell signaling activities,9�11 this report

will focus on the role that H2O2 plays in exercise-mediated

redox signaling via post-translational modifications.

2. ROS are a family of biological signaling molecules

Reactive chemical species are often grouped into categories

depending upon the reactive atom.12 ROS is an umbrella term

that includes several ROS formed by redox reactions or elec-

tronic excitation. Since ROS is a term referring to several

chemical species, the name “ROS” does not denote a specific

molecule. Nonetheless, because of the technical challenges in

the detection of specific ROS in cells, it is common in redox

biology to use the label “ROS” to refer to all ROS (both radical

and non-radical).10,13 Table 1 provides an overview of key

ROS, including both radical and non-radical species.

The parent molecule of all ROS is the superoxide radical

(O2
.�), and while numerous ROS exist, H2O2 is recognized as

a key ROS player in redox control of biological signaling in

mammals.9,11,14-16 Indeed, H2O2 is a versatile and pleiotropic

signaling molecule.10 It has been over 50 years since the

discovery that H2O2 levels are regulated in cells.17 Similar to

other key signaling molecules (e.g., calcium), H2O2 is typi-

cally controlled in resting skeletal muscle fibers at low levels

(e.g., 0.01�0.1 mM); however, muscular contractions can

increase the intracellular concentrations up to 0.2 mM.18 More-

over, because ROS production occurs at specific locations

within muscle fibers, the concentration of H2O2 differs across

cellular compartments; the physiological significance of

regional differences in ROS concentration will be addressed

later.

3. Sources of ROS production in contracting muscles

ROS are produced via numerous sources in resting and

contracting skeletal muscle fibers. Indeed, in human cells,

a total of 41 enzymes are capable of producing O2
.� and/or

H2O2.
19 Of these ROS producing enzymes, nicotinamide

adenine dinucleotide phosphate (NADPH) oxidase (NOX)

complexes are the only enzyme family known to produce

ROS as their primary function.20 Although the cellular

sites of muscle contraction-induced ROS production have

been investigated for decades, debate continues about

which ROS generating locations are dominant during exer-

cise. In this regard, several sources of ROS production

exist in contracting muscle fibers, including mitochondria,

xanthine oxidase, phospholipase A2 (PLA2), and NADPH

oxidases (Fig. 1).

Mitochondria were first proposed to be a major source of

ROS in contracting muscle fibers over 40 years ago.3 Nonethe-

less, several lines of evidence indicate that mitochondria are

not the dominant source of ROS during acute exercise. For

example, assessment of ROS emission from both isolated skel-

etal muscle mitochondria and permeabilized muscle fibers

reveals that mitochondria produce significantly more ROS in

State 4 respiration (i.e., resting conditions) compared to State

3 respiration (ADP-driven, muscle contractions).21,22 Further-

more, studies using a mitochondrial targeted fluorescent indi-

cator (i.e., MitoSOX) to identify superoxide production during

muscular contractions show that mitochondrial superoxide

production does not increase during muscular contractions

lasting up to 10 min.23,24 Similarly, a study using a mitochon-

drial-targeted redox-sensitive green fluorescent protein to

measure mitochondrial redox potential concluded that mature,

single myocytes do not increase their mitochondrial ROS

production during short periods of muscle contractions.25

Laker et al.26 developed a mitochondrial reporter gene (pMito-

Timer) to measure skeletal muscle mitochondrial oxidation in

vivo. This work revealed that 90 min of treadmill running does

not increase mitochondrial ROS production in active skeletal

muscles.27 Together, these studies indicate that mitochondria

are not a prominent source of ROS during a single acute bout

of exercise. However, while mitochondrial ROS production is

not elevated during a single bout of exercise, a subsequent

bout of muscle contractions (20 min after first exercise session)

does increase mitochondrial ROS production.24 These

intriguing results suggest that repeated bouts of exercise can

modify mitochondrial ROS production during successive exer-

cise. To further complicate this issue, while acute exercise

does not increase mitochondrial ROS production, emerging

evidence reveals that basal mitochondrial ROS production is

elevated at 3�12 h post exercise.27 While the mechanisms

Table 1

Overview of key reactive ROS including both radical and non-radical species.

Non-radical ROS
�H2O2: H2O2 is commonly produced by the dismutation of O2

.� via

superoxide dismutases. Although H2O2 is a relatively strong 2 electron

oxidant, it’s reactivity with biological targets is limited because of the high

activation energy and the low cellular concentrations of H2O2.
�Organic hydroperoxides: This class of ROS includes hydroperoxides

formed from lipid peroxidation of both polyunsaturated fatty acids and

sterols (cholesterol).
� Singlet oxygen: Singlet oxygen is an electronically excited form of oxygen

that can be formed by photoexcitation.

Free radical ROS
� Superoxide anion radical: The O2

.- is formed when molecular oxygen

accepts a single electron.
�HO: Most reactive ROS. The HO is formed from H2O2 by reduction via a

metal-catalyzed reaction (e.g., Fe2+).
� Peroxyl radical: Peroxyl radicals are formed by reactions between

molecular oxygen and carbon-centered radicals.

Abbreviations: HO = hydroxyl radical; H2O2 = hydrogen peroxide; O2
.- =

superoxide anion radical; ROS = reactive oxygen species
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responsible for this post-exercise increase in mitochondrial

ROS production in contracting muscle remain unclear, recent

data reveal that a single bout of exercise results in an increase

in NOX4 expression in muscle fibers that could contribute to

post-exercise ROS production and redox signaling.28,29 More

will be said about this important topic later.

Enzymes of the PLA2 super family catalyze the hydrolysis

of ester bonds on phospholipids within the cell membrane,

sarcoplasmic reticulum, and mitochondrial membranes to

produce arachidonic acid and other fatty acids.30,31 Notably,

arachidonic acid is a substrate for lipoxygenases to produce

ROS.30,31 The PLA2 family consists of 16 members catego-

rized into several groups that include both calcium and

calcium-independent enzymes.30,31 Skeletal muscles express

both calcium-dependent and calcium independent PLA2

enzymes that modulate oxidant production in the cytosol and

mitochondria during muscular contractions.32�34 Although

muscle contraction results in PLA2-mediated O2
�� production,

whether or not PLA2 production of ROS is a dominant source

of cytosolic ROS in skeletal muscle during exercise remains

an open question.

Xanthine oxidase has been proposed as another source of

exercise-induced ROS production. Xanthine oxidase is an

oxidoreductase that produces O2
�� by oxidizing hypoxanthine

to form xanthine; the oxidation of xanthine to uric acid follows

with the resultant production of O2
��.35 Studies investigating

the abundance of xanthine oxidase in skeletal muscle reveal

that xanthine oxidase is either absent or expressed at low

levels in human skeletal muscle.36�38 However, xanthine

oxidase is found within capillary endothelial cells surrounding

muscle fibers.36,37 Moreover, muscle contractions activate

xanthine oxidase within capillary endothelial cells resulting in

increased O2
�� production.39�42 Following the conversion of

O2
�� to H2O2 via extracellular superoxide dismutase, H2O2

can cross the sarcolemma contributing to an increase in ROS

within the contracting muscle fibers.10 Therefore, it is feasible

that xanthine oxidase-induced ROS production outside the

muscle fiber can impact the intracellular redox status of

contracting muscle fibers.

Although 5 isoforms of NOX exist in skeletal muscle,

NOX2 and NOX4 have received the most experimental atten-

tion, and both play a role in production of ROS.20,43 The

NOX2 isoform is located within the sarcolemma and the T-

tubules.20,43 In contrast, NOX4 is found in the mitochondrial

inner membrane and colocalized with the ryanodine receptor

in the sarcoplasmic reticulum.20,43 Interestingly, both NOX2

and NOX4 exhibit a fiber type-dependent expression with

mRNA levels of both NOX2/NOX4 being higher in slow, type

I muscle fibers compared to fast, type II fibers.44

Active NOX2 is a multimeric enzyme composed of several

subunits.43 Activation of NOX2 in skeletal muscle involves

contraction-induced phosphorylation of key subunits (p47phox

or p67phox); these post-translational events lead to these subu-

nits binding to the NOX complex located in the sarcolemma to

form a functionally active complex.43

The NOX4 isoform is 39% homologous to NOX2 but

notably, NOX4 can produce both O2
�� and H2O2; nonetheless,

which of these species is the dominant ROS remains a

debate.43 Historically, it has been believed that NOX4 is

constitutively active and, therefore, the levels of ROS produc-

tion from this isoform are transcriptionally regulated.43 None-

theless, select proteins (e.g., p22phox) have been reported to

modulate NOX4 activity; therefore it appears feasible that

NOX4 may be allosterically regulated.45 Future studies are

required to provide definitive evidence as to whether NOX4 is

constitutively active or responds to activators.

While it is unclear whether NOX4 is a source of contrac-

tion-induced ROS production, a growing number of reports

Fig. 1. Illustration of the sources of ROS in contracting skeletal muscles. See text for details. AQP = aquaporin; ETC = electron transport chain; H2O2 = hydrogen

peroxide; NOX2 = nicotinamide adenine dinucleotide phosphate oxidase 2; NOX4 = nicotinamide adenine dinucleotide phosphate oxidase 4; O2 = oxygen;

O2
.� = superoxide anion radical; PLA2 = phospholipase A2; ROS = reactive oxygen species; SOD1= superoxide dismutase 1; SOD2= superoxide dismutase 2;

SOD3= superoxide dismutase 3; VDAC = voltage dependent anion channel; XO = xanthine oxidase.

ARTICLE IN PRESS

Please cite this article as: Scott K. Powers et al., Reactive oxygen species promote endurance exercise-induced adaptations in skeletal muscles, Journal of Sport and Health Science

(2024), https://doi.org/10.1016/j.jshs.2024.05.001

Redox signaling and muscle adaptation 3

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

https://doi.org/10.1016/j.jshs.2024.05.001


indicate that active NOX4 is required for muscle adaptation to

endurance exercise.28,46,47 In this regard, as discussed earlier,

exercise training has been shown to increase NOX4 expression

following acute exercise. Therefore, if NOX4 is constitutively

active, an increased abundance of NOX4 would increase

NOX4-mediated production of H2O2 following exercise.

More will be said about NOX4 and exercise-induced muscle

adaptations later.

It is now clear that contraction-induced activation of NOX2

is a key source of ROS production during exercise. For

example, electrical stimulation-induced contraction of

myotubes results in ROS production, which is blocked when

NOX2 activity is pharmacologically inhibited.48,49 Moreover,

studies stimulating single muscle fibers have reported that

NOX2 is a dominant source of ROS production during

muscular contractions.25,50 Notably, technological advances

now permit the detection of NOX2 activation and ROS

production within muscle fibers in vivo. Using recently devel-

oped techniques, in vivo studies reveal that both continuous

exercise and moderate/high intensity interval exercise activate

NOX2 and that active NOX2 plays a key role in muscle

contraction-induced ROS.51�53

In summary, muscular contractions result in increased cyto-

solic ROS production in myotubes (in vitro), isolated mature

muscle fibers (in vitro), and skeletal muscle fibers (in vivo).

Although the primary sites of ROS production in contracting

muscle remain a topic of debate, growing evidence suggests

that contraction-induced activation of NOX2 plays an impor-

tant role in ROS production in skeletal muscle during exercise.

While evidence also implicates both PLA2 and xanthine

oxidase in exercise-induced production of ROS, additional

research is required to clarify the roles that PLA2 and xanthine

oxidase play in muscle ROS production during exercise. For

details about the sources of ROS production during exercise,

the reader is referred to comprehensive reviews on this

topic.18,20,54�57

4. Regulation of ROS in muscle fibers via redox sinks and

relays

A detailed discussion of all enzymatic and non-enzymatic

antioxidants in muscle fibers exceeds the scope of this review.

Nonetheless, for readers unfamiliar with cellular antioxidants,

we summarize key cellular enzymatic antioxidants and intro-

duce the concept of redox relays. For more details about

cellular antioxidants, readers are referred to the following

reviews.12,58�60

Cellular levels of ROS are the sum of production and

removal of each species. Superoxide radicals produced inside

cells are dismutated into H2O2 via 2 isoforms of superoxide

dismutase (SOD). SOD1 is found in both the cytosol and the

mitochondrial intermembrane space whereas SOD2 is located

within the mitochondrial matrix. In healthy cells, levels of

H2O2 are maintained in the low nanomolar range; this control

occurs because catalase, glutathione peroxidases (GPX), and

peroxiredoxins (PRDX) catalyze the removal of H2O2.
12 Eight

isoforms of GPX exist (GPX1�8) and 6 isoforms of PRDX

(PRDX1�6) are found in humans; both enzymes are located

in the cytosol and the mitochondrion to facilitate removal of

H2O2 within different cellular compartments.61,62

While both GPX and PRDX remove H2O2, PRDX are

expressed in higher levels than GPX, leading to the view that

PRDX play the dominant role in elimination of H2O2 within

cells.62 Notably, PRDX are also hypothesized to play a key

role in transmitting oxidizing equivalents to other target

proteins.10 This transfer of oxidizing equivalents from PRDX

to molecular targets is an example of a relay that contributes to

redox signaling in cells.10 Indeed, the ability of PRDX to

transfer oxidizing equivalents to specific target proteins is

predicted to be important in cellular redox signaling because

the reaction rate constants of H2O2 with many proteins is rela-

tively low. Examples of PRDX acting as a redox relay can be

demonstrated for PRDX2 and the transcription factor signal

transducer and activator of transcription 3.63 Similarly,

PRDX2 can also serve as a redox relay for a key kinase in the

ROS responsive p38 mitogen-activated kinase (p38) signaling

pathway.64

5. Overview of redox signaling

Again, H2O2 is recognized as a key player in redox control

of biological signaling.9,11,14�16 In healthy cells, the steady-

state physiological flux of H2O2 leads to reversible oxidation

of target proteins; this process alters protein activity leading to

a physiological level of redox signaling referred to as

“oxidative eustress.”10,13,65 In contrast to the levels of H2O2

that support normal redox signaling during oxidative eustress,

higher (i.e., supraphysiological) levels of ROS lead to wide-

spread oxidation of both proteins and lipids, resulting

in cellular damage; this condition is labeled “oxidative

distress.”10,13,65

As an oxidant, H2O2 is a versatile molecule that participates

in numerous signaling events. As discussed earlier, cellular

levels of H2O2 are regulated by a group of efficient antioxidant

enzymes. During oxidative eustress, cellular H2O2 levels are

predicted to be maintained within 0.01�0.1 mM.10,18 During

muscular contractions, intracellular H2O2 levels can double,

reaching 0.1�0.2 mM (Fig. 2).55 Note, however, these

numbers serve only as an estimate because measurement of

H2O2 levels in cells is technically difficult and the cellular

levels of H2O2 likely differ between cell types and across

varying subcellular locations.10

The primary mechanism by which H2O2 achieves speci-

ficity to promote biological signaling is via the oxidation of

sulfur (thiolate groups) in target proteins; notably, thiolate

groups in target proteins show rates of reactions with H2O2

that are significantly higher than those of protein thiols.15 To

promote biological signaling, H2O2-induced thiol oxidation

must target select proteins by oxidation of specific cysteines.66

Unfortunately, explaining how H2O2 achieves this signaling

goal has been challenging.66 For example, at the predicted

cellular levels of H2O2 during oxidative eustress, H2O2 reacts

with redox-related signaling proteins (e.g., kinases, phospha-

tases, and transcription factors).67 Furthermore, because of the
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high abundance and reactivity of PRDX with H2O2, PRDX are

projected to capture most of the H2O2 produced within cells.66

Therefore, a conundrum arises: how are redox signaling

proteins oxidized by H2O2? Although there is no consensus

answer to this question, 2 schools of thought have emerged.

One school of thought is that H2O2 reacts directly with

thiols on redox-regulated proteins. Specifically, this position

hypothesizes that in cellular locations near the site of H2O2

production, the local concentrations of H2O2 are elevated,

resulting in the direct interaction of H2O2 with the target

protein. A potential contributor to local increases in the H2O2

concentration in cells is that the interaction between PRDX

and H2O2 can oxidize PRDX, resulting in a reversible decrease

in PRDX activity. It follows that inhibition of PRDX activity

enables the accumulation of H2O2 in localized areas, leading

to the direct oxidation of protein thiols to promote redox

signaling in pathways involved in skeletal muscle adaptation

to endurance exercise.66,67 For example, mitogen-activated

kinases, protein tyrosine phosphatases, peroxisome prolifer-

ator-activated receptor gamma, nuclear factor-kappa B (NF-

kB), and nuclear factor erythroid-derived 2-like 2 (Nrf2) are

all redox-sensitive signaling proteins that are activated in

response to endurance exercise to promote functional adapta-

tions in skeletal muscle fibers.68�71 Fig. 3 provides a sche-

matic representation of how local increases in H2O2 levels can

result in direct oxidation of redox-regulated signaling proteins.

The second school of thought postulates that PRDX serve

as redox relays to transfer oxidizing equivalents from H2O2

Fig. 2. Illustration of the predicted extracellular and intracellular concentrations of H2O2 in skeletal muscle fibers at rest and during contractions. H2O2 = hydrogen

peroxide; NOX2 = nicotinamide adenine dinucleotide phosphate oxidase 2; O2
.� = superoxide anion; PLA2 = phospholipase A2; XO = xanthine oxidase.

Fig. 3. Diagram illustrating a potential mechanism responsible for exercise-induced redox signing leading to adaptation in skeletal muscles. Specifically, repetitive

muscular contractions result in H2O2 production from several sources; this local increase in H2O2 results in direct oxidation of redox-sensitive proteins linked to

key signaling pathways. See text for more information. Illustration modified from Jackson et al.18 H2O2 = hydrogen peroxide; MAPK =mitogen activated kinase;

NF-kB = nuclear factor kappa beta; NOX2 = nicotinamide adenine dinucleotide phosphate oxidase 2; NOX4 = nicotinamide adenine dinucleotide phosphate

oxidase 4; Nrf2 = nuclear factor erythroid-derived 2-like 2; O2
.� = superoxide anion radical; PGC-1a = Peroxisome proliferator-activated receptor-gamma coacti-

vator alpha; PLA2 = phospholipase A2; XO = xanthine oxidase.
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into a disulfide bond that can be transmitted to redox-sensitive

signaling proteins via the formation of intermolecular

disulfides.18,55,63 Indeed, this line of reasoning speculates that

PRDX are not competitors of protein thiol oxidation but,

rather, promote protein oxidation by relaying oxidizing equiv-

alents to redox-regulated target proteins (Fig. 4). In this

school of thought, it is postulated that local concentrations of

H2O2 are insufficient to directly oxidize signaling proteins.

However, it is predicted that H2O2 reacts with highly sensitive

PRDX that serve as redox relays to oxidize redox-signaling

proteins via disulphide exchange, leading to activation of

signaling pathways. For details about these 2 schools of

thought on H2O2 signaling in cells, see Stocker et al.,66 Sies

and Jones,10 and Jackson et al.18

Finally, it is noteworthy that these 2 schools of thought

concerning how H2O2 signaling occurs in cells are not mutu-

ally exclusive. Indeed, it is feasible that H2O2 signaling can

occur in dissimilar ways under differing cellular conditions.

For example, whether H2O2 acts directly or indirectly via

redox relays to oxidize target proteins will likely depend upon

the cellular locations of H2O2 production and the duration of

H2O2 production.66 For instance, H2O2 signaling propagation

could occur differently during oxidative eustress and oxidative

distress conditions. Further, it is also possible that a plurality

of H2O2 signaling exists during both eustress and oxidative

distress conditions.66 The next segment highlights several key

cellular targets of redox signaling in skeletal muscles during

endurance exercise training.

6. Cellular targets of redox signaling

Endurance exercise training results in numerous adaptations

in muscle fibers including: increased abundance of heat shock

protein 72 (HSP72); mitochondrial biogenesis; and increased

expression of numerous antioxidant enzymes. These exercise-

induced adaptations occur in skeletal muscles due to the acti-

vation of several signaling pathways, many of which are under

redox control. The next sections highlight 4 redox-sensitive

signaling pathways that promote endurance exercise-induced

increases in gene expression of heat shock proteins, mitochon-

drial biogenesis, and the synthesis of antioxidant enzymes in

skeletal muscles.

6.1. Redox control of exercise-induced expression of HSP72

It is well-known that endurance exercise training increases

the expression of numerous stress proteins in both cardiac and

skeletal muscle, including HSP72.72�77 An increased abun-

dance of HSP72 in heart and skeletal muscle fibers is protec-

tive against a variety of stressors. For example, increased

expression of HSP72 in skeletal muscle can slow the progres-

sion of muscular dystrophy, increase insulin sensitivity,

and protect muscle fibers against several different conditions

that promote muscle wasting.78�83 Further, elevated levels

of HSP72 in cardiac myocytes protect against ischemia-

reperfusion injury.84

The heat shock factor protein 1 (HSF1) acts as the primary

transcription factor for the expression of HSP72 in humans

and other mammals. In an unstressed skeletal muscle fiber,

HSF1 is an inactive monomer in the cytoplasm and is

complexed with regulatory proteins (e.g., HSP70 and

HSP90).85 Activation of HSF1 in skeletal muscle by endurance

exercise, heat, or other stressors is a multistep process that

includes the dissociation of the regulatory proteins, followed

by trimerization of the HSF monomer, nuclear localization,

DNA binding, and transcription of target genes (e.g.,

Fig. 4. Diagram illustrating a potential route by which exercise-induced production of H2O2 reacts with highly sensitive peroxidases that oxidize redox-sensitive

signaling pathways via disulfide exchange. See text for more information. Figure modified from reference.18 H2O2 = hydrogen peroxide; MAPK =mitogen

activated kinase; NF-kB = nuclear factor kappa B; NOX2 = nicotinamide adenine dinucleotide phosphate oxidase 2; NOX4 = nicotinamide adenine dinucleotide

phosphate oxidase 4; O2
.� = superoxide anion radical; PGC-1a = peroxisome proliferator-activated receptor-gamma coactivator; PLA2 = phospholipase A2;

Prx = peroxiredoxins; Trx = thioredoxins; XO = xanthine oxidase.
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HSP72)86 (Fig. 5). While the mechanisms that regulate HSP1

activation continue to be investigated, it is recognized that

redox signaling plays a key role in exercise-induced activation

of HSP72 gene expression by HSF1.81,86�88 Indeed, supple-

mentation with high levels of dietary antioxidants has been

shown to blunt exercise-induced expression of HSP72 in both

heart and skeletal muscle fibers.89

6.2. Exercise and redox control of mitochondrial biogenesis

Increased mitochondrial volume in skeletal muscle fibers is

a hallmark of endurance exercise training. This exercise-

induced increase in mitochondrial volume is mediated by tran-

scriptional regulators that promote increased gene expression

of both nuclear and mitochondrially encoded genes.90 Mito-

chondrial biogenesis requires the expression of approximately

1200 gene products; notably, most of these genes are found

within the myonucleus, with an additional 13 genes located in

the mitochondria.90 A short summary of the role that redox

signaling plays in exercise-induced mitochondrial biogenesis

follows.

The transcriptional coactivator peroxisome proliferator-

activated receptor gamma coactivator-1 alpha (PGC-1a) is

often labeled as the master regulator of mitochondrial biogen-

esis.91 Indeed, PGC-1a drives the expression of respiratory

complex subunits, mitochondrial import machinery, and

several antioxidants via its interaction with select transcription

factors, including nuclear respiratory factors 1 and 2.90

Notably, both nuclear respiratory factors 1 and 2 regulate the

expression of mitochondrial transcription factor A (TFAM), as

well as nuclear-encoded mitochondrial proteins.92,93 The

control of TFAM by PGC-1a92,93 provides a mechanism to

coordinate mitochondrial gene expression with nuclear gene

expression to complete mitochondrial biogenesis.

Exercise-induced activation of PGC-1a in skeletal muscle

involves the coordination of several kinases, including

calcium/calmodulin-dependent protein kinases (e.g., CaMKII

and CaMKIV), adenosine monophosphate-activated protein

kinase (AMPK), and p38.90,94 In this regard, contraction-

induced production of ROS has been implicated in the activa-

tion of CaMKII, AMPK, and p38.95,96 For example, physiolog-

ically relevant concentrations of H2O2 can activate AMPK

through oxidative modification of the AMPK subunit; hence,

in addition to responding to changes in energy availability

(i.e., AMP/ATP ratio), AMPK activity is also directly influ-

enced by redox status.97 Moreover, it is established that H2O2

is an activator of p38 signaling.64 Therefore, based on the

oxidant-mediated regulation of both AMPK and p38 activity,

it follows that mitochondrial biogenesis is controlled, at least

in part, by a redox-sensitive mechanism that stimulates both

PGC-1a activation and TFAM signaling (Fig. 6).98,99

Complete details of the redox regulation of mitochondrial

biogenesis exceeds the scope of this review. For additional

information, the reader is referred to recent reviews on the

topic.54,90

6.3. Endurance exercise and Nrf2 signaling

An additional hallmark of endurance exercise training is an

increased abundance of numerous antioxidant enzymes in the

trained skeletal muscles.60 In this regard, Nrf2 is a transcrip-

tional activating factor responsible for the control of >250

genes providing cellular defense against oxidative stress and

numerous other stressors.100�102 Indeed, Nrf2 is considered

the master regulator of antioxidant defenses in cells.103 In

response to increased cellular ROS production, activated Nrf2

interacts with the antioxidant response elements to promote

the expression of numerous cellular antioxidant enzymes,

including isoforms of both GPX and PRDX, along with thiore-

doxin and glutathione reductase.103�105 Although the regula-

tion of Nrf2 is complex, key elements involved in the

regulation of Nrf2 activity are well-known.104 During resting

Fig. 5. Illustration of the impact of endurance exercise training on the production of ROS activation of HSF1 leading to the expression of HSP72 in skeletal muscle

fibers. HSE = heat shock element; HSF1 = heat shock factor 1; HSP = heat shock protein; ROS = reactive oxygen species.
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conditions, Nrf2 in skeletal muscle fibers is sequestered in the

cytoplasm by the regulatory protein Kelch-like ECH-associ-

ated protein 1 (KEAP1).104,106 However, during exercise-

induced oxidant production, KEAP1 and Nrf2 dissociate,

allowing Nrf2 to translocate into the nucleus to bind with anti-

oxidant response elements and promote the expression of anti-

oxidant genes.104 Specifically, KEAP1 can prevent Nrf2 from

entering the nucleus in at least 2 ways: (1) KEAP1 binds to

Nrf2 in the cytoplasm to prevent Nrf2 from moving into the

nucleus102; and (2) the KEAP1/Nrf2 interaction in the cyto-

plasm targets Nrf2 for polyubiquitination and degradation via

the ubiquitin-proteasome system.102 Thus, during resting

conditions, the relatively low level of Nrf2 in the nucleus

maintains basal expression of antioxidant enzymes in skeletal

muscle. However, during bouts of endurance exercise, the

contraction-induced increase in ROS production results in

both oxidant and electrophilic stress that modifies redox-sensi-

tive cysteine residues on KEAP1, resulting in Nrf2 movement

into the nucleus to promote the expression of antioxidant

genes (Fig. 7).71,104

6.4. Exercise and NF-kB signaling

The transcriptional activating factor NF-kB comes from a

family of 5 transcriptional factors, including p65, Rel B, c-Rel,

p52, and p50.107,108 To gain transcriptional capability, 2 of

these family members must dimerize to achieve transcriptional

competency.108 Though all 5 NF-kB family members are

expressed in skeletal muscle, it is predicted that the p50�p65

heterodimer accounts for most of the NF-kB activity in

muscle.109 Although NF-kB is regulated, in part, by redox

influences, the control of NF-kB activity is subject to complex

regulation. During unstressed conditions, NF-kB transcrip-

tional factors remain in the cytoplasm bound to the inhibitory

protein, IkB; this IkB binding prevents the dimerization of

p50�p65 and therefore prevents NF-kB from moving into the

nucleus.110 However, an increase in cellular production of

ROS can promote the dissociation of IkB, resulting in

p50�p65 movement into the nucleus and the associated

increase in gene expression108 (Fig. 8). Depending on the

specific NF-kB heterodimer formed, NF-kB has many gene

targets, including the key antioxidant enzymes SOD1, SOD2,

catalase, and GPX1.111

Note that although an increase in cellular ROS production

can stimulate NF-kB�mediated gene expression, exception-

ally high levels of ROS in cells can impair the capacity of NF-

kB to bind to DNA.108,112 Indeed, oxidation of NF-kB dimers

can inhibit NF-kB binding with DNA and therefore, redox

signaling can both promote and inhibit NF-kB�mediated gene

expression.112 However, whether contraction-induced levels

of ROS can reach the levels required to depress NF-kB binding

to DNA remains unknown. Nonetheless, recent evidence indi-

cates that incremental exercise to exhaustion activates NF-kB

signaling in human skeletal muscle and regulates the expres-

sion of several antioxidant enzymes.113

7. Contribution of redox signaling in endurance exercise-

induced skeletal muscle adaptation

The preceding section highlights evidence that redox

signaling contributes to mitochondrial biogenesis, expression

of HSP72, and the increased synthesis of cellular antioxidant

enzymes. The key question becomes: how robust is the

evidence that exercise-induced production of ROS is essential

to achieve the full benefits of endurance exercise-induced

adaptations in skeletal muscle? The next paragraphs highlight

3 lines of evidence supporting the position that exercise-

Fig. 6. Illustration of the impact of endurance exercise training on the production of ROS activation of the transcriptional coactivator PGC-1a, leading to mito-

chondrial biogenesis in skeletal muscle fibers. AMPK = adenosine monophosphate-activated protein kinase; CaMK = calcium/calmodulin kinases; Nrf2 = nuclear

factor erythoid-derived 2-like 2; p38 MAPK = p38 mitogen activated kinase; PGC-1a = peroxisome proliferator-activated receptor-gamma coactivator alpha;

ROS = reactive oxygen species.
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induced ROS production plays a key role in skeletal muscle

adaptations following endurance exercise.

The observation that supplementation with high doses of

antioxidants (e.g., 400 i.u. vitamin E/1000 mg vitamin C)

blunts some of the endurance exercise-induced adaptations in

skeletal muscles supports the view that exercise-induced ROS

production and redox signaling is essential for endurance

training-induced adaptation to skeletal muscles. Specifically,

numerous studies conclude that dietary supplementation with

select antioxidants blunts the endurance training-induced

adaptations in skeletal muscles of humans and other

animals.89,114�120 Nonetheless, not all studies concur with this

conclusion.121�124 The explanation for these divergent find-

ings remains unclear but may be related to the dose and

specific antioxidants used as well as the duration/intensity of

exercise training.

In contrast to these antioxidant supplementation studies,

uniform evidence indicates that NOX2- and/or NOX4-derived

Fig. 8. Illustration of the impact of endurance exercise on the activation of the transcription factor NF-kB, leading to the expression of antioxidant

enzymes (e.g., SOD1 and 2) in skeletal muscle fibers. IkB = inhibitory protein B; p50 = member of nuclear kappa beta family of transcriptional factors;

p65 = member of nuclear kappa beta family of transcriptional factors; ROS = reactive oxygen species; SOD = superoxide dismutase;

Fig. 7. Illustration of the impact of endurance exercise and resting conditions on the activation of the transcription factor, nuclear regulatory factor 2, leading to the

expression of antioxidant enzymes in skeletal muscle fibers. ARE = antioxidant response element; KEAP1 = Kelch-like ECH-associated protein 1; Nrf2 = nuclear

factor erythoid-derived 2-like 2; Ub = ubiquitin.
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ROS production is required for exercise-induced adaptations in

skeletal muscles.28,46,51,52,125 For example, pharmacological

inhibition of NOX2 blunts exercise-induced gene expression

in skeletal muscle following a bout of endurance exercise.

Similarly, muscle specific knockout of NOX2 diminishes the

training response to both endurance exercise and high intensity

interval training.52,53 For a detailed review of the evidence that

NOX2 signaling plays a key role in exercise-induced adapta-

tions in skeletal muscles see Henriquez-Olguin et al.20 in the

selected readings.

It is worth noting the evidence also indicates that exercise-

induced activation of NOX4 in skeletal muscles is required for

certain exercise-induced muscle adaptations.28,125 In partic-

ular, knockout of muscle-specific NOX4 diminishes the exer-

cise training-induced increase in insulin sensitivity.28 These

results provide cause and effect evidence to connect NOX4-

derived ROS production in skeletal with the exercise-induced

adaptations that promote increased insulin sensitivity.28 As

discussed earlier, the increase in NOX4-mediated ROS produc-

tion in skeletal muscle may occur after the exercise bout due to

increased expression of NOX4 in muscle fibers.

In addition to the NOX4 located in skeletal muscle, NOX4

is also expressed in the capillary endothelium and recent

evidence suggests that several exercise responsive genes in

skeletal muscle are dependent upon ROS production by endo-

thelial NOX4.125 Explicitly, deletion of endothelial NOX4

decreases the expression of several metabolic genes following

exercise. In particular, although vascular NOX4 is not required

for the exercise-induced increase in PGC-1a, endothelial

NOX4 is required for the exercise-induced expression of both

hexokinase and pyruvate dehydrogenase; these results suggest

that a ROS crosstalk exists between the endothelium and skel-

etal muscle in response to exercise.125

In summary, numerous studies using a variety of experi-

mental approaches have addressed the question of whether

exercise-induced production of ROS is required to attain the

maximum benefits of endurance exercise-induced metabolic

adaptations in skeletal muscle. Together, the available

evidence supports the concept that exercise-induced ROS

production is essential to achieve the full benefit of exercise-

induced adaptation in skeletal muscles.

8. Summary and future directions

Muscular contractions result in an acute increase in ROS

production from several cellular locations, including NOX2

and PLA2. Moreover, evidence indicates that a bout of endur-

ance exercise results in increased mitochondrial ROS produc-

tion within 3�6 h post-exercise. Collectively, this exercise-

induced ROS production triggers signaling pathways regu-

lating mitochondrial biogenesis and the expression of

numerous genes (HSP72, mitochondrial oxidative enzymes,

antioxidant enzymes, etc.) associated with muscle adaptation

to endurance exercise. Growing evidence reveals that ROS

production from NOX2 in skeletal muscle along with muscle

and endothelial NOX4 contributes to these exercise-induced

adaptations; collectively, these data support the concept that

exercise-induced ROS production is essential to achieve the

full benefit of exercise-induced adaptation in skeletal muscles.

Although progress has been made in our understanding of

the role that ROS play in exercise-induced muscle adaptations,

several questions remain unanswered. For example, although

PLA2 can produce ROS during muscular contractions, the

relative role that PLA2 ROS production plays in exercise-

induced redox signaling is unknown.

Furthermore, although H2O2 is known to be an intracellular

messenger in signal transduction, how muscle contraction-

induced production of H2O2 leads to selective oxidation of

specific thiols on signaling proteins remains unclear. In regard

to H2O2 signaling, it is important to determine the relative

contributions of PRDX-mediated oxidation or oxidation

through other intermediary effectors versus direct thiol oxida-

tion.

Another important area for future research is the investiga-

tion of the ROS signaling crosstalk that occurs between

NOX4/vascular ROS production and NOX2/NOX4 ROS

production within the contracting muscle fibers. Moreover,

many unanswered questions remain regarding the role that

NOX4 plays in promoting post-exercise ROS production and

the potential role that this post-exercise ROS production plays

in stimulating muscle adaptations to exercise training. Indeed,

there is much more to be learned about this exciting topic.
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