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Introduction

According to the International Diabetes Federation (IDF), 
the estimated number of individuals worldwide affected by 
diabetes mellitus was 537 million in 2021, with projections 
demonstrating an increase to 783 million by the year 2045 
[1]. The urbanization and development of the global econ-
omy have significantly contributed to the rise in diabetes 
cases, driven by factors such as reduced physical activity, 
unhealthy dietary habits, and aging [2, 3].

Insulin resistance impairs the ability of muscle cells 
to take up and store glucose and triglycerides, leading to 
high levels of glucose and triglycerides in the bloodstream. 
Additionally, insulin resistance is linked to a higher like-
lihood of developing cardiovascular diseases (CVDs) and 
mortality [4, 5]. Previous studies have shown that various 
factors, including inflammatory factors, indices of insulin 

Communicated by Salvatore Corrao, M.D.

	
 Xia Zeng
sunyan0092@163.com

	
 Zhannguo Su Guo
sport.ac20@gmail.com

1	 Department of Emergency Medicine, Sichuan Provincial 
People’s Hospital, University of Electronic Science and 
Technology of China, Chengdu 610072, China

2	 Chongqing Sport Education College, Chongqing  
404147, China

3	 Faculty of Physical Education, Huainan Normal University, 
Huainan 231038, Anhoui, China

4	 International College, Krirk Sport University,  
Bangkok 10221, Thailand

Abstract
Aims  Type 2 diabetes mellitus (T2DM) is prevalent worldwide, often manageable through lifestyle changes like physical 
activity. This meta-analysis aimed to determine the effect of resistance training (RT) on cardiovascular risk factors in adults 
with T2DM.
Methods  Four databases were searched up to March 2024. The mean difference (MD) was calculated by a random effect 
model with 95% confidence interval (CI).
Results  Forty-eight articles were included in the review. There was a significant pooled effect size for the meta-analysis 
comparing RT vs. control on hemoglobin A1C (MD = -0.49, 95% CI: -0.66, -0.33; P < 0.00001), fasting blood sugar (MD 
= -11.58, 95% CI: -18.61, -4.55; P = 0.001), insulin (ES = -1.65, 95% CI: -2.87, -0.42; P = 0.008), HOMA-IR (MD = -1.20, 
95% CI: -1.85, -0.55; P = 0.0003), triglyceride (MD = -18.14, 95% CI: -30.32, -5.96; P = 0.004), and high-density lipopro-
tein (MD = 2.71, 95% CI: 0.78, 4.64; P = 0.006). Moreover, RT was effective for reducing body weight (MD = -0.81, 95% 
CI: -1.50, -0.13; P = 0.02), fat percentage (MD = -0.92, 95% CI: -1.62, -0.22; P = 0.010), and waist circumference (MD = 
-2.14, 95% CI: -3.00, -1.28; P < 0.00001).
Conclusion  RT effectively improves cardiovascular risk factors in T2DM adults, suggesting potential as treatment or preven-
tion. Future studies can consider investigating the optimal RT regimen to achieve effective T2DM management in adults.
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resistance, and lipid profile contribute to the development 
of CVDs [3].

According to the American College of Sports Medicine 
(ACSM), physical exercise is a therapeutic approach for 
individuals with T2D. The current recommendation sug-
gests that a minimum cumulative energy expenditure of 
1000  kcal per week should be achieved through engag-
ing in aerobic activities [6]. The recommendations from 
the American Diabetes Association (ADA) align with the 
aforementioned guidelines, suggesting at least 150 min per 
week of moderately intense aerobic exercise, or alterna-
tively, 90  min per week of vigorous aerobic exercise [7]. 
Consequently, aerobic exercise has been the primary area 
of focus in studies examining exercise training, as it con-
sistently demonstrates improvements in glucose control [8]. 
Nevertheless, long-term adherence to these recommenda-
tions remains low, highlighting the need for research into 
effective strategies that can enhance compliance rates.

Over the past decade, there has been an increasing inter-
est in investigating the impacts of resistance training (RT) 
on glycemic control and insulin sensitivity. This interest 
stems from the acknowledgement that RT operates through 
both overlapping mechanistic pathways with aerobic train-
ing, as well as distinct pathways that deliver additional 
benefits for insulin signaling [9]. The emphasis on RT is 
driven, in part, by the understanding that people with T2D, 
who often have obesity or other co-morbidities, may face 
challenges in achieving the required volume and intensity 
of aerobic training to elicit significant improvements [9]. 
Consequently, there is a possibility of higher adherence to 
RT regimens.

Moreover, it has been found that RT enhances muscu-
lar strength and endurance, improves flexibility, positively 
impacts body composition, and declines the likelihood of 
developing CVDs [4]. In contrast to aerobic exercise, the 
recommendation for resistance exercise by the ADA was 
only initiated in 2006. If there are no contraindications, it 
is advisable to encourage diabetic patients to engage in RT 
three times a week, focusing on all major muscle groups and 
progressing to three sets of 8–10 repetitions using a weight 
that cannot be lifted more than 8–10 times [2]. The popu-
larity of RT has grown due to its positive impact on body 
composition and muscular strength. Additionally, it has 
been recognized for its role in promoting health and com-
bating disease [2]. Such advantages comprise ameliorated 
glycemic control, blood lipids, and bone mineral density in 
healthy populations [2].

The most recent systematic review and meta-analysis, 
conducted by Jansson et al. [8] explored the impact of RT on 
hemoglobin A1c in adults with T2DM across 20 studies up 
until January 2021. However, additional randomized con-
trolled trials (RCTs) have been published since then [1, 2, 

4, 10–13], indicating the need for an updated meta-analysis. 
Moreover, despite its growing recognition, the full scope of 
RT’s impact on cardiovascular risk factors in T2D remains 
to be fully elucidated. Therefore, this meta-analysis aimed 
to fill this gap by synthesizing only recent level 1 (RCT) 
evidence to offer fresh perspectives on the effects of RT on 
cardiovascular risk factors in patients with T2DM.

Materials and methods

Design

The present systematic review was prospectively regis-
tered in the PROSPERO international register of systematic 
reviews (CRD42024509820). It was executed and docu-
mented adhering to the PRISMA guidelines [14].

Information sources and search strategy

The scoping search for similar systematic reviews utilized 
the systematic review databases, PROSPERO and Cochrane 
Library [15]. Then, comprehensive searches were conducted 
across four online databases, including CINAHL (EBS-
DCO), PubMed, MEDLINE (Ovid), and EMBASE (Ovid). 
The search strategies were developed according to the PICO 
[16] method with detailed strategies provided in Supple-
mentary Table S1. Additionally, reference lists and grey lit-
erature databases, such as Google Scholar, were screened 
to ensure the inclusion of relevant studies. The search was 
restricted to studies published in English from the incep-
tion of each database to March 1, 2024. To identify relevant 
RCTs, the inclusion and exclusion criteria to the titles and 
abstracts of all papers were independently applied by two 
investigators (LX, ZhS). The full text of any RCTs that were 
not expressly excluded by the abstract or title was examined 
by both investigators. Disagreements between investigators 
were settled by consultation until an agreement was reached. 
In cases where the potentially eligible studies reported data 
that could not be distinguished, the corresponding authors 
were contacted for further clarification.

Inclusion and exclusion criteria

RCTs published in English were appropriate for inclusion 
if they assessed the effect of a resistance exercise training 
intervention in comparison to usual care (i.e., no interven-
tion, standard care, sham exercise control group, or brief 
advice/recommendation only) on cardio-metabolic markers 
(hemoglobin A1C, fasting blood sugar, insulin, HOMA-IR, 
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triglyceride, cholesterol, high-density lipoprotein, and low 
density lipoprotein) and body composition (body weight, 
body mass index, fat%, and waist circumference) in men 
and women (aged ≥ 18) with T2D. We defined a resistance 
workout as an exercise mode that requires exertion of force 
against a resistance and is completed in a dynamic fashion 
[17]. Studies were excluded if the intervention group was 
not RT only (e.g., RT was combined with aerobic and/or 
dietary intervention). Trials without control or studies deal-
ing with animals were also excluded. Finally, if the partici-
pants were pregnant women with gestational diabetes, trials 
were also excluded.

Outcome measures

The outcomes measures included various cardio-metabolic 
markers: hemoglobin A1C, fasting blood sugar, insulin, 
HOMA-IR, triglyceride, cholesterol, high-density lipopro-
tein, and low-density lipoprotein. Additionally, body com-
position variables such as body weight, body mass index, fat 
percentage, and waist circumference were assessed.

Data extraction

One author (LX) completed data extraction and the sec-
ond author (ZhS) checked for accuracy. We applied a data 
extraction form according to the Cochrane Data Collection. 
The following information from each included study was 
extracted: first author’s last name, publication year, country, 
intervention features (duration, frequency and duration of 
each exercise session), exercise intensity and progression, 
number of participants in each group, gender, mean age in 
each group, and mean body mass index. Means and standard 
deviation (SD) were extracted from the data; where stan-
dard errors were reported, we converted them to SD.

Quality assessment and risk of bias

The validated Tool for the Assessment of Study Quality and 
Reporting in Exercise (TESTEX) [18], a 15-point scale spe-
cific to exercise training interventions was applied to deter-
mine the study quality. A score of 10 or higher is regarded 
as good reporting and study quality [19].

The risk of bias of the included studies was assessed 
using the revised Cochrane risk of bias, version 2 (RoB 2) 
tool [20]. The assessment of risk of bias in each study was 
conducted based on the appropriateness of sequence gen-
eration, allocation concealment, blinding of participants 
and personnel, blinding of outcome assessors, completeness 
of follow-up, and selecting reporting. Each criterion was 

assessed as adequate, inadequate, or unclear, in accordance 
with Cochrane risk of bias criteria [21]. The risk of bias in 
each RCT was classified as either low (all criteria graded 
adequate), moderate (one criterion graded inadequate, or 
2 graded unclear) or high (2 or more criteria graded inad-
equate, or more than 2 graded unclear). The two authors 
divided the included RCTs at random, cross-checked the 
studies’ quality and accuracy of the data extraction, and then 
evaluated the results.

Data analysis

Meta-analyses and forest plots were created using RevMan 
5 [22], and meta-regression analyses were conducted using 
Comprehensive Meta-Analysis software (V.3 for Windows, 
Biostat, Englewood, New Jersey, USA). The p-value was 
set at 5% for the effect size. We performed meta-analyses 
to demonstrate the impact of RT versus control on outcome 
measures. Random-effects model and inverse variance 
methods were applied in the meta-analyses to estimate the 
mean difference (MD) and 95% confidence interval (CI). 
Data on outcomes were extracted using mean and SD values. 
The difference between the mean at baseline and post-inter-
vention was calculated, and the SD change was determined 
by considering the sample size in the study, along with the 
group p-values or the 95% CI, in cases where the mean and 
SD were not reported. In addition, we converted standard 
error of the mean (SEM) to SD in instances where SEM was 
provided instead of SD [23]. GetData Graph Digitizer soft-
ware was utilized to extract data from figures if data were 
not presented in the text or tables, as well as authors were 
not available.

The I2 statistic was utilized to assess statistical heteroge-
neity, with I2 values exceeding 50% indicating considerable 
heterogeneity [24]. In cases where high levels of heteroge-
neity were observed in a meta-analysis, we examined study 
features and data-related factors to identify the source of 
heterogeneity. Sub-group analyses were conducted, consid-
ering intervention duration (≤ 12 weeks and > 12 weeks), 
gender (men, women, or mix), baseline hemoglobin A1C 
(< 7.5% and ≥ 7.5%), and baseline BMI (< 30  kg.m2 and 
≥ 30  kg.m2) as potential causes of heterogeneity. Addi-
tionally, meta-regression was performed to further explore 
potential sources of heterogeneity, including year of pub-
lication, number of sessions per week, mean sample age, 
sample size, and study quality scores (using TESTEX). Fur-
thermore, sensitivity analyses were conducted to assess the 
reliability and stability of the outcomes. The risk of publica-
tion bias was evaluated using funnel plots [25].
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article selection process adhered to the guidelines outlines 
by the PRISMA, as illustrated in Fig. 1.

Participant, and intervention characteristics

Supplementary Table S2 shows the details of participant, 
and intervention characteristics. A total of 2191 participants 
(intervention: 1148; control: 1043) were included. Among 
these, 1056 participants were female, 1006 were male; and 
the remaining 129 participants were not classified. The 
minimum mean age was 21.29 ± 1.90 years [11], while the 
maximum mean age was 73.2 ± 2.6 years [26]. Prior to the 
study, all participants led a sedentary lifestyle, and the con-
trol groups were instructed to maintain their routine lifestyle 
throughout the study. The studies were conducted across 

Results

Study selection

Our initial combined search yielded a total of 1436 arti-
cles, subsequently yielding 677 articles for evaluation after 
removal of duplicates, based on their titles and abstracts. 
The full screening process resulted in 60 articles, out of 
which 12 were eliminated due to the following reasons: (1) 
the absence of a control group; (2) the utilization of com-
bined exercise training interventions; (3) the replication of 
a previously conducted study; (4) the inclusion of an active 
control group; and (5) the utilization of an acute interven-
tion. Finally, 48 article met the inclusion criteria and were 
consequently incorporated into the meta-analysis. The 

Fig. 1  Flow chart for selection of studies for systematic review
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differences, indicating a notable level of robustness in these 
effects.

Fasting blood sugar. A meta-analysis of 34 trials involv-
ing 1444 participants demonstrated a statistically significant 
reduction in fasting blood sugar with RT, as depicted in Fig. 3 
(MD: – 11.58 mg/dl, 95% CI: − 18.61, − 4.55; P = 0.001), 
with high heterogeneity (I2 = 93%). Subgroup analyses 
demonstrated that the decrease in fasting blood sugar after 
RT was statistically significant in: (1) both exercise train-
ing duration exceeding 12 weeks (MD: − 9.52 mg/dl, 95% 
CI: − 17.73 to – 1.32; I2 = 70%) and those ≤ 12 weeks (MD: 
− 11.60 mg/dl, 95% CI: − 20.72 to – 2.47; I2 = 94%) (see 
Supplementary Table S3), (2) in women (MD: − 17.89 mg/
dl, 95% CI: − 33.97 to – 1.81; I2 = 95%) and men (MD: 
− 10.98 mg/dl, 95% CI: − 15.88 to – 6.08; I2 = 0%), but not 
in both sexes (MD: − 7.72 mg/dl, 95% CI: − 17.32 to 1.89; 
I2 = 91%) (see Supplementary Table S3), (3) in studies with 
a baseline hemoglobin A1C of < 7.5% (MD: − 8.58, 95% 
CI: − 14.28 to – 2.87); p = 0.003; I2 = 64%) and those with 
≥ 7.5% (MD: − 14.98, 95% CI: − 27.91 to – 2.05; p = 0.02; 
I2 = 96%), and (4) in studies with a baseline BMI of < 30 kg/
m2 (MD: − 12.10, 95% CI: − 24.01 to – 0.19); p = 0.05; 
I2 = 94%) and those with ≥ 30 kg/m2 (MD: − 11.58, 95% CI: 
− 18.61 to – 4.55; p = 0.005; I2 = 89%) (see Supplementary 
Table S3). Sensitivity analysis exhibited that the exclusion 
of individual studies did not result in any statistically sig-
nificant differences, demonstrating a notable level of robust-
ness in these effects.

Insulin. A meta-analysis of 15 trials involving 528 par-
ticipants demonstrated a statistically significant reduction 
in insulin with RT, as depicted in Fig. 4 (MD: – 1.65, 95% 
CI: − 2.87, − 0.42; P = 0.008), with high heterogeneity 
(I2 = 90%). Subgroup analyses based on intervention dura-
tion demonstrated that insulin did not significantly change 
after RT in either exercise training duration exceeding 12 
weeks (MD: − 4.19, 95% CI: − 10.91 to 2.53; I2 = 90%) 
or those ≤ 12 weeks (MD: − 1.22, 95% CI: − 2.57 to 0.14; 
I2 = 89%) (see Supplementary Table S3). However, sub-
group analyses based on gender demonstrated that insulin 
levels significantly decreased only in men (MD: − 3.20, 
95% CI: − 6.07 to – 0.32; I2 = 91%), but not in women 
(MD: 0.18, 95% CI: − 1.01 to 1.38; I2 = 21%) or in both 
sexes combined (MD: − 2.05, 95% CI: − 4.29 to 0.19; 
I2 = 92%) (see Supplementary Table S3). Additionally, sub-
group analyses based on baseline A1C levels revealed that 
insulin levels did not significantly change in studies with 
baseline A1C < 7.5% (MD: -0.57, 95% CI: -1.78 to 0.64; 
p = 0.35; I² = 29%) but significantly decreased in those with 
A1C ≥ 7.5% (MD: -2.42, 95% CI: -4.18 to -0.65; p = 0.007; 
I² = 94%). Finally, analyses based on baseline BMI levels 
showed no significant change in insulin levels for studies 
with BMI < 30 kg/m² (MD: -0.61, 95% CI: -2.33 to 1.12; 

various countries: 11 in Iran, five in the USA, four in India, 
four in Brazil, three in Australia, three in Korea, two in Ger-
many, two in China, two in Japan, and one each in New Zea-
land, Finland, Ireland, Portugal, Taiwan, Greece, Sri Lanka, 
Malaysia, Canada, Belgium, Ethiopia, and Columbia. The 
duration of the interventions ranged from 4 to 6 weeks [27] 
to 12 months [28, 29]. Among the included RCTs, only 14 
[30–43] reported the anti-diabetic medications used by par-
ticipants during the intervention, including biguanides, sul-
fonylureas, and metformin.

RT exercise prescription

Supplementary Table S2 displays a summary of RT exer-
cise prescriptions in each included study. The number of 
exercises included in each workout ranged from 3 [44] to 
12 [31, 45, 46]. Most studies utilized weight machines or 
free weights, except for three studies [26, 40, 42] which 
employed elastic bands. Studies used a workout frequency 
of either seven [26, 46], five [27, 40, 47], four [11], three [1, 
2, 4, 10, 13, 28–31, 34, 36, 37, 41, 42, 45, 48–64], two to 
three [65], two [12, 32, 33, 39, 43, 44, 66, 67], or one [38] 
sessions per week.

Effects of RT interventions on cardio-metabolic 
markers

Hemoglobin A1C. A meta-analysis of 43 trials involving 
1953 participants demonstrated a statistically significant 
reduction in hemoglobin A1C with RT, as illustrated in 
Fig. 2 (MD: − 0.49, 95% CI: − 0.66, − 0.33; P < 0.0001), 
with high heterogeneity (I2 = 85%). Subgroup analyses 
demonstrated that the decrease in hemoglobin A1C levels 
after RT was statistically significant in: (1) both those with 
an exercise training duration of more than 12 weeks (MD: 
− 0.50, 95% CI: − 0.79 to − 0.21; I2 = 93%) and those with 
a duration of ≤ 12 weeks (MD: − 0.42, 95% CI: − 0.65 to – 
0.30; I2 = 65%) (see Supplementary Table S3), (2) in women 
(MD: − 0.68, 95% CI: − 1.08 to – 0.28; I2 = 54%), men (MD: 
− 0.89, 95% CI: − 1.39 to – 0.40; I2 = 44%) and both sexes 
combined (MD: − 0.42, 95% CI: − 0.60 to – 0.24; I2 = 88%) 
(see Supplementary Table S3), (3) in studies with a baseline 
hemoglobin A1C of < 7.5% (MD: − 0.15, 95% CI: − 0.31 
to 0.00); p = 0.05; I2 = 62%) and those with ≥ 7.5% (MD: 
− 0.81, 95% CI: − 1.06 to − 0.55; p < 0.00001; I2 = 88%), 
and (4) in studies with a baseline BMI of < 30 kg/m2 (MD: 
− 0.53, 95% CI: − 0.72 to – 0.33); p < 0.00001; I2 = 79%) 
and those with ≥ 30 kg/m2 (MD: − 0.44, 95% CI: − 0.72 to 
– 0.15; p = 0.003; I2 = 90%) (see Supplementary Table S3). 
Sensitivity analysis displayed that the exclusion of indi-
vidual studies did not result in any statistically significant 
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(MD: – 18.14 mg/dl, 95% CI: − 30.32, − 5.96; P = 0.004), 
with moderate heterogeneity (I2 = 59%). Subgroup analyses 
based on intervention duration confirmed that triglyceride 
significantly decreased after RT in exercise training dura-
tion ≤ 12 weeks (MD: − 23.90, 95% CI: − 37.43 to – 10.37; 
I2 = 53%), but not in studies lasted > 12 weeks (MD: − 5.87, 
95% CI: -34.81 to 23.07; I2 = 67%) (see Supplementary 
Table S3). However, subgroup analyses based on gender 
demonstrated that triglyceride levels significantly decreased 
only in studies conducted on both sexes (MD: − 14.51, 95% 
CI: − 20.20 to − 8.82; I2 = 0%), but not in studies with iso-
lated men (MD: 4.5, 95% CI: − 100.74 to 109.74; I2 = 88%) 
or women (MD: − 4.02, 95% CI: − 67.66 to 59.62; I2 = 89%) 
(see Supplementary Table S3). Additionally, sensitivity 

p = 0.49; I² = 84%), whereas a significant decrease was 
observed in those with BMI ≥ 30  kg/m² (MD: -2.8, 95% 
CI: -4.61 to -1.00; p = 0.002; I² = 91%) (see Supplementary 
Table S3). Sensitivity analysis displayed that when Gordon 
et al. [55] was removed, the overall effect of RT became 
insignificant (MD: − 1.10, 95% CI: − 2.25, 0.05; I2 = 88%).

HOMA-IR. A meta-analysis of nine trials involving 276 
participants demonstrated a statistically significant reduc-
tion in HOMA-IR with RT, as represented in Fig. 5 (MD: 
– 1.20, 95% CI: − 1.85, − 0.55; P = 0.003), with high het-
erogeneity (I2 = 91%).

Triglyceride. A meta-analysis of 23 trials involving 880 
participants revealed a statistically significant reduction 
in triglyceride levels with RT, as illustrated in Figure S1 

Fig. 2  Forest plot of effect on hemoglobin A1C level post-exercise intervention program
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Fig. 4  Forest plot of effect on insulin level post-exercise intervention program

 

Fig. 3  Forest plot of effect on fasting blood sugar level post-exercise intervention program
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– 0.81 kg, 95% CI: − 1.50, − 0.13; P = 0.02), with no hetero-
geneity (I2 = 0%). Subgroup analyses based on intervention 
duration demonstrated that body weight did not significantly 
change after RT in either exercise training duration exceed-
ing 12 weeks (MD: − 0.86, 95% CI: − 1.81 to 0.09; I2 = 0%) 
or those ≤ 12 weeks (MD: − 0.76, 95% CI: − 1.75 to 0.23; 
I2 = 0%) (see Supplementary Table S3). Subgroup analyses 
based on gender demonstrated that body weight significantly 
decreased only in both sexes combined (MD: − 0.79, 95% 
CI: − 1.51 to – 0.07; I2 = 0%), but not in men (MD: -1.85, 
95% CI: − 6.09 to 2.38; I2 = 0%) or women (MD: − 0.72, 
95% CI: − 3.17 to 1.73; I2 = 0%) (see Supplementary Table 
S3). Sensitivity analysis displayed that when Honkola et al. 
[39] was removed, the overall effect of RT became insignifi-
cant (MD: − 0.68, 95% CI: − 1.40, 0.03; I2 = 0%).

Body mass index. Meta-analysis of the effect of RT on 
body mass index found no evidence of a change as demon-
strated in Figure S6 (MD: – 0.21 kg.m2, 95% CI: − 0.44, 
0.01; P = 0.06). Moreover, we observed low levels of het-
erogeneity among studies (I2 = 10%).

Fat percentage. A meta-analysis of 18 studies involv-
ing 739 participants demonstrated a statistically significant 
decline in fat percentage with RT, as revealed in Figure S7 
(MD: – 0.92, 95% CI: − 1.62, − 0.22; P = 0.010), with low 
levels of heterogeneity (I2 = 45%; p = 0.02). Subgroup anal-
yses based on intervention duration confirmed that fat per-
centage significantly decreased after RT in exercise training 
duration exceeding 12 weeks (MD: − 1.36, 95% CI: − 2.01 
to -0.71; I2 = 0%), but not in those ≤ 12 weeks (MD: − 0.73, 
95% CI: − 1.71 to 0.25; I2 = 0%) (see Supplementary Table 
S3). Moreover, subgroup analyses based on gender demon-
strated that fat percentage significantly decreased in women 
(MD: − 1.20, 95% CI: − 2.30 to – 0.11; I2 = 0%) and in both 
sexes combined (MD: − 1.21, 95% CI: − 2.18 to − 0.25; 
I2 = 36%), but not in men (MD: − 0.23, 95% CI: − 1.87 to 
1.41; I2 = 64%) (see Supplementary Table S3). Sensitivity 
analysis exhibited that the exclusion of individual studies 

analysis exhibited that the exclusion of individual studies 
did not result in any statistically significant differences, 
demonstrating a notable level of robustness in these effects.

Cholesterol. A meta-analysis of 21 trials comprising 713 
participants revealed non-significant improvements in cho-
lesterol levels with RT (MD: – 8.81, 95% CI: − 19.17, 1.54; 
P = 0.10), with high heterogeneity (I2 = 94%) (Figure S2).

High-density lipoprotein. A meta-analysis of 22 trials 
involving 853 participants revealed a statistically signifi-
cant increase in high-density lipoprotein levels with RT, as 
indicated in Figure S3 (MD: 2.71 mg/dl, 95% CI: 0.78, 4.64; 
P = 0.006), with moderate heterogeneity (I2 = 77%). Sub-
group analyses based on intervention duration demonstrated 
that high-density lipoprotein significantly increased after 
RT in studies lasted 12 weeks or less (MD: 3.02, 95% CI: 
0.18 to 5.86; I2 = 72%), but no in those lasted > 12 weeks 
(MD: 1.94, 95% CI: − 0.96 to 4.85; I2 = 79%) (see Supple-
mentary Table S3). Moreover, subgroup analyses based on 
gender demonstrated that high-density lipoprotein levels 
significantly increased in men (MD: 5.07, 95% CI: − 0.08 
to – 10.22; I2 = 0%) and in both sexes combined (MD: 2.17, 
95% CI: − 0.04 to 4.37; I2 = 80%), but not in women (MD: 
5.44, 95% CI: − 2.14 to 13.03; I2 = 77%) (see Supplemen-
tary Table S3). Sensitivity analysis exhibited that the exclu-
sion of individual studies did not result in any statistically 
significant differences, demonstrating a notable level of 
robustness in these effects.

Low-density lipoprotein. Meta-analysis of the effect 
of RT on low-density lipoprotein found no evidence of a 
change as demonstrated in Figure S4 (MD: – 7.07 mg/dl, 
95% CI: − 17.83, 3.70; P = 0.20). However, we observed 
high heterogeneity among studies (I2 = 91%; p < 0.00001).

Effects of RT interventions on body composition

Body weight. A meta-analysis of 19 studies involving 880 
participants demonstrated a statistically significant decline 
in body weight with RT, as revealed in Figure S5 (MD: 

Fig. 5  Forest plot of effect on HOMA-IR post-exercise intervention program
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variables did not indicate asymmetry, suggesting a low 
likelihood of publication bias (Supplementary Figures 
S10-17). Furthermore, the results of Egger’s test showed 
no significant evidence of publication bias for the analyzed 
variables, including hemoglobin A1C (p = 0.06613), fast-
ing blood sugar (p = 0.10525), insulin (p = 0.20041), tri-
glyceride (p = 0.85490), HDL (p = 0.86846), body weight 
(p = 0.35908), fat% (p = 0.39111), and waist circumference 
(p = 0.86321). These findings suggest that the observed 
effects are unlikely to be influenced by publication bias.

Discussion

This systematic review and meta-analysis included 48 stud-
ies and 2,191 participants, and making it the most exten-
sive study to explore the effects of RT on cardiovascular 
risk factors in people with T2DM. We observed significant 
improvements in glycemic control, HDL levels, as well as 
some anthropometric variables.

Consistent with previous meta-analyses [8, 27, 69, 70], 
we found that RT interventions reduce hemoglobin A1C 
levels, indicative of improved long-term glycemic con-
trol among T2DM participants engaged in RT. Similarly, 
fasting blood sugar levels exhibited a significant decrease 
post-intervention, suggesting enhanced glucose regula-
tion. Notably, the observed reductions in insulin levels and 
HOMA-IR further underscore the beneficial effects of RT 
on insulin sensitivity, a crucial aspect in the management of 
insulin resistance and T2DM. Previous research has high-
lighted that even a modest decrease of 0.3% in hemoglobin 
A1C holds clinical significance [71, 72]. Thus, the results of 
our meta-analysis hold clinical relevance, as we observed 
a 0.49% reduction in hemoglobin A1C. Notably, our study 
revealed a larger effect size for hemoglobin A1C compared 
to the effect sizes reported by Liu et al. (-0.45%), Ishiguro 
et al. (-0.34%) and Jansson et al. (-0.39%) for the same vari-
able [8, 69, 73], possibly due to the inclusion of additional 
studies.

There are some possible pathways through which RT 
may enhance glycemic control. One possible mechanism 
involves skeletal muscle facilitating substantial glucose 
uptake via glucose transporters [74], particularly glucose 
transporter type 4 (GLUT4), which mediates insulin-
induced glucose uptake [75]. RT has the capacity to aug-
ment the protein content of GLUT4, and increased muscle 
mass can boost glucose uptake [76]. Consequently, features 
of RT regimens that promote muscular hypertrophy may 
contribute to improved glycemic control. Nonetheless, sin-
gle session of RT has demonstrated reductions in glucose 
levels among individuals with T2DM [77], indicating that 

did not result in any statistically significant differences, 
demonstrating a notable level of robustness in these effects.

Waist circumference. A meta-analysis of 16 studies 
involving 732 participants demonstrated a statistically sig-
nificant decrease in waist circumference with RT, as revealed 
in Figure S8 (MD: – 2.14  cm, 95% CI: − 3.00, − 1.28; 
P < 0.00001), with low levels of heterogeneity (I2 = 22%). 
Subgroup analyses based on intervention duration dem-
onstrated that waist circumference significantly reduced 
after RT in both exercise training duration exceeding 12 
weeks (MD: − 2.88, 95% CI: − 3.94 to -1.81; I2 = 16%) and 
those ≤ 12 weeks (MD: − 1.24, 95% CI: − 2.10 to − 0.37; 
I2 = 0%) (see Supplementary Table S3). Moreover, subgroup 
analyses based on gender demonstrated that waist circum-
ference significantly reduced only in both sexes combined 
(MD: − 2.35, 95% CI: − 3.41 to – 1.29; I2 = 36%), but not 
in women (MD: − 1.79, 95% CI: − 5.55 to 1.97; I2 = 0%). 
Additionally, only one trial [68] was conducted in men, with 
no evidence of change (MD: − 0.49, 95% CI: − 2.82 to 1.84) 
(see Supplementary Table S3). Sensitivity analyses found 
the overall effect of RT is robust when removing studies one 
by one.

Meta-regression analyses

Meta-regression analyses revealed that none of the consid-
ered variables significantly contributed to the observed het-
erogeneity in hemoglobin A1C, fasting blood sugar, insulin, 
triglyceride, high-density lipoprotein, or body weight 
changes (all p > 0.05). Yet, in the analysis of fat percentage, 
mean sample age emerged as a significant predictor of het-
erogeneity (Q = 4.13, p = 0.0420). Similarly, in the analysis 
of waist circumference, both mean sample age (Q = 8.52, 
p = 0.0035) and year of publication (Q = 13.16, p = 0.0003) 
were found to significantly affect the RT effect (see Supple-
mentary Tables S4-S43).

Risk of bias, publication bias, and quality of 
evidence

In total, only five studies [2, 13, 51, 53, 54] were deemed 
to have an unclear risk of bias, and all other studies were 
identified as having a high risk of bias. The risk-of-bias 
assessment for each individual study can be found in Sup-
plementary Figure S9.

According to the TESTEX tool, the quality of the studies 
presented in this meta-analysis is good, median score was 
10 (from a maximum score of 15; range 8–13) (see Supple-
mentary Table S44).

To further explore the possibility of publication bias, 
we conducted funnel plots and Egger’s test for vari-
ables with significant changes. The funnel plots for these 
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in longer interventions. Interestingly, subgroup analyses 
based on gender revealed that the decrease in triglyceride 
levels was significant only in studies involving both sexes, 
while studies with isolated male or female participants did 
not show significant changes. The notable improvements in 
high-density lipoprotein levels further support the favorable 
impact of RT on lipid profiles, which are paramount in miti-
gating cardiovascular risk factors [85]. While non-signifi-
cant changes were observed in cholesterol and low-density 
lipoprotein levels, the significant increase in high-density 
lipoprotein and concurrent decrease in triglycerides suggest 
a favorable shift in lipid metabolism with RT interventions. 
These findings collectively underscore the multifaceted 
benefits of RT in ameliorating metabolic health variables 
and reducing cardiovascular risk in individuals with meta-
bolic disorders.

The impact of RT on anthropometric measures is likely 
mediated by increased muscle mass and enhanced meta-
bolic activity, facilitating greater glucose uptake and uti-
lization. The reduction in fat percentage also indicates a 
shift towards a more favorable body composition, which 
has been linked to decreased insulin resistance and lower 
cardiovascular risk in individuals with T2DM [78–80]. The 
consistent effects of RT on body composition across dif-
ferent intervention durations suggest that both short- and 
long-term RT programs can be effective in improving body 
composition in T2DM patients, although factors such as 
training intensity and baseline fitness levels may influence 
the degree of improvement.

Overall, our findings suggest that the effects of RT on 
lipid profiles are influenced by various factors, including 
intervention duration and gender composition. Moreover, 
on the basis of the available evidence, the varied responses 
of lipids may be linked to other factors such as the volume 
and intensity of training [44]. These insights can inform the 
development of tailored RT interventions aimed at optimiz-
ing lipid profiles in individuals with metabolic disorders. 
Further research is warranted to explore the mechanisms 
underlying these subgroup differences and to guide per-
sonalized approaches to RT-based interventions for lipid 
management.

In the pathophysiological development of T2DM, weight 
issues are often associated with insulin resistance, a key risk 
factor. Effective management of T2DM involves not only 
controlling blood glucose levels but also addressing insulin 
resistance and achieving weight loss [86]. In this systematic 
review and meta-analysis, RT programs were found to sig-
nificantly reduce fasting blood sugar levels, body weight, 
and fat percentage. These results align with previous reports 
demonstrating the effectiveness of exercise in individuals 
with T2DM, showing improvements in blood glucose con-
trol and insulin resistance by facilitating glucose uptake and 

certain features of RT may enhance glycemic control irre-
spective of muscular hypertrophy.

Our meta-analysis demonstrated that RT interventions 
significantly reduce body weight, fat percentage, and waist 
circumference-key anthropometric markers associated with 
metabolic health and cardiovascular risk [78, 79]. These 
findings align with studies highlighting RT’s role in improv-
ing body composition through enhanced muscle mass and 
decreased fat mass, which contribute to better metabolic 
outcomes in T2DM [78]. The reductions in fat percentage 
and waist circumference directly influence insulin sensitiv-
ity and glucose metabolism [79–81], further supporting the 
role of RT in improving metabolic health.

Subgroup analyses based on intervention duration also 
demonstrated notable decreases in hemoglobin A1C and 
fasting blood sugar levels in both medium- and long-term 
interventions (≤ 12 weeks and > 12 weeks). These findings 
are consistent with studies conducted by Ishiguro and col-
leagues [73] and Jansson and colleagues [8], which simi-
larly found that intervention duration did not significantly 
influence the impact of RT on hemoglobin A1C. Further-
more, another meta-analysis, which categorized included 
studies into two subgroups (8–20 weeks and 21–48 weeks), 
reported no differences in hemoglobin A1C between the 
subgroups of RT [82]. This suggests that the duration of 
intervention may not play a substantial role in reducing 
hemoglobin A1C levels, as both shorter and longer regi-
mens may yield comparable effects. However, it is impor-
tant to note that this finding may not extend to other crucial 
indicators of glycemic control and insulin resistance, such 
as insulin and the HOMA-IR, as our analysis revealed no 
significant changes in insulin levels following RT, regard-
less of whether the exercise training duration exceeded 12 
weeks or was ≤ 12 weeks.

Our analysis revealed significant reductions in triglycer-
ide levels, a key lipid variable associated with cardiovascular 
risk, particularly in studies with intervention durations of 12 
weeks or less. This suggests that the initial phases of RT are 
especially effective in improving lipid profiles, likely due to 
early metabolic adaptations. During these early weeks, indi-
viduals may experience enhanced lipoprotein lipase (LPL) 
activity, which are subsequently taken up and oxidized by 
muscles [83]. However, this reduction in triglycerides was 
not observed in studies lasting longer than 12 weeks, which 
may be due to the body’s adaptation to the exercise regimen, 
leading to a plateau in lipid metabolism improvements [84]. 
As training progresses, the relative intensity or progression 
of the exercise regimen might decrease, reducing the stimu-
lus for further triglyceride reduction. Additionally, the body 
may shift its focus from reducing circulating triglycerides to 
mobilizing and utilizing other lipid stores, such as intramus-
cular fat, which could explain the lack of further reductions 
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promoting us to conduct further analyses such as meta-
regression and sub-group analyses to explore potential 
sources of variation. Second, it is important to acknowledge 
the possibility of publication bias, where studies that fail 
to demonstrate statistical and/or clinical significance may 
be less likely to be published. This can occur either due 
to authors’ decisions to refrain from publication or due to 
rejection of such articles by scientific journals. As a result, 
the findings of our meta-analysis should be interpreted with 
caution. Fourth, although our review focused on assessing 
the effects of resistance exercise training on cardio-met-
abolic variables in individuals with T2DM, it is essential 
to recognize that the use of other type 2 diabetes medica-
tions, such as metformin, was not explicitly accounted for 
or reported in the included studies. This limitation could 
potentially impact the generalizability of our findings and 
the interpretation of the results. Future research should aim 
to investigate the effects of RT regimens among individu-
als with T2DM who are on various medications, thereby 
offering a more comprehensive understanding of its efficacy 
across diverse patient populations. Lastly, the inclusion of 
RCTs published exclusively in English may introduce pub-
lication bias, potentially limiting the generalizability of the 
findings. Consequently, it is crucial to approach the interpre-
tation of the review results with caution.

In conclusion, this meta-analysis with meta-regression 
provides further evidence supporting the effectiveness of RT 
regimens in reducing cardiovascular risk factors, including 
hemoglobin A1C, fasting blood sugar, insulin, HOLA-IR, 
triglyceride, and high-density lipoprotein, as well as body 
weight, fat percentage, and waist circumference in patients 
with T2DM. Therefore, RT programs can be considered as 
a viable option for T2DM patients, either as a prescribed 
treatment or as a preventive measure. Future studies can 
consider investigating the optimal RT regimen to achieve 
effective T2DM management in adults.
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utilization in skeletal muscle [87–89]. Moreover, an eleva-
tion in plasma-free fatty acids can result in the inactivation 
of cellular insulin receptors, leading to reduced stimulation 
of the insulin signaling pathway and consequently, insulin 
resistance [44, 90]. Given that exercise promotes increased 
metabolism, utilizing fats both during and after physical 
activity, it is likely that changes in body fat (i.e., fat per-
centage) have also contributed to enhancing cellular glucose 
uptake.

Meta-regression analyses revealed that none of the con-
sidered variables significantly contributed to the observed 
heterogeneity in several outcomes, including hemoglobin 
A1C, fasting blood sugar, insulin, triglyceride, high-density 
lipoprotein, or body weight changes. However, in fat per-
centage analysis, mean sample age emerged as a significant 
predictor of heterogeneity, suggesting that differences in 
the age composition of study populations may influence the 
observed effects of interventions on fat percentage. Simi-
larly, in waist circumference analysis, both mean sample age 
and year of publication were found to significantly affect the 
observed effects. These findings highlight the importance of 
considering demographic factors such as age and tempo-
ral trends in study outcomes when interpreting results and 
designing interventions targeting metabolic health. None-
theless, future research should aim to further investigate the 
factors contributing to heterogeneity in metabolic outcomes 
to advance our understanding and improve interventions 
aimed at promoting metabolic health.

There are several key strengths to our study. First, to 
the best of our knowledge, this is the first meta-analysis to 
explore the efficacy of RT regimens on cardio-metabolic 
variables and body composition in adults diagnosed with 
T2DM. Second, it adheres to the PRISMA reporting guide-
lines, ensuring transparency and adherence to best prac-
tices in systematic review methodology. Furthermore, only 
studies employing a RCT design were included, enhancing 
the rigor and reliability of the findings. Third, the review 
utilized TESTEX [18], a quality assessment tool not previ-
ously employed in similar systematic reviews, to evaluate 
the methodological quality of the included studies. Finally, a 
rigorous inclusion/exclusion protocol was followed to mini-
mize confounding factors among study populations, guided 
by established methodologies proposed by Berman and 
Parker (2002) [91]. This study also has some limitations. 
First, the majority of the RCTs included in our analysis 
demonstrated methodological quality ranging from low to 
moderate, potentially introducing bias into the analyses and 
limiting the strength of evidence to levels ranging from low 
to medium. However, despite this limitation, we accounted 
for study quality in our meta-regression analysis and found 
that it did not significantly impact the findings. Addition-
ally, both meta-analyses revealed statistical heterogeneity, 
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