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Abstract

Branched-chain amino acids (BCAA: leucine, isoleucine and valine) are three of the nine indispensable amino acids, and are frequently

consumed as a dietary supplement by athletes and recreationally active individuals alike. The popularity of BCAA supplements is largely

predicated on the notion that they can stimulate rates of muscle protein synthesis (MPS) and suppress rates of muscle protein breakdown (MPB),

the combination of which promotes a net anabolic response in skeletal muscle. To date, several studies have shown that BCAA (particularly

leucine) increase the phosphorylation status of key proteins within the mechanistic target of rapamycin (mTOR) signalling pathway involved in

the regulation of translation initiation in human muscle. Early research in humans demonstrated that BCAA provision reduced indices of whole-

body protein breakdown and MPB; however, there was no stimulatory effect of BCAA on MPS. In contrast, recent work has demonstrated that

BCAA intake can stimulate postprandial MPS rates at rest and can further increase MPS rates during recovery after a bout of resistance exercise.

The purpose of this evidence-based narrative review is to critically appraise the available research pertaining to studies examining the effects of

BCAA on MPS, MPB and associated molecular signalling responses in humans. Overall, BCAA can activate molecular pathways that regulate

translation initiation, reduce indices of whole-body and MPB, and transiently stimulate MPS rates. However, the stimulatory effect of BCAA on

MPS rates is less than the response observed following ingestion of a complete protein source providing the full complement of indispensable

amino acids.
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Introduction

Amino acids are the fundamental building blocks of skeletal

muscle and other bodily proteins. In total, there are twenty

proteinogenic amino acids that when combined via peptide

bonds produce proteins that are incorporated into various

tissues. Nine of the twenty amino acids are deemed ‘indispen-

sable’ or essential amino acids (EAA); the human body is unable

to synthesize them endogenously in quantities sufficient to meet

requirements(1), and they therefore must be obtained exog-

enously via dietary intake. The branched-chain amino acids

(BCAA) represent three of the nine EAA that together account for

∼14% of the amino acids found in skeletal muscle proteins(2).

They are neutral (nonpolar and hydrophobic) amino acids and

are unique in that they contain a non-linear (branched) aliphatic

side chain. At the whole-body level, BCAA physiology can be

divided into a tissue pool and a circulating pool. BCAA that are

derived from dietary intake or liberated from protein via protein

breakdown appear in the circulation. BCAA are then taken up

from the circulation into body tissues (e.g. skeletal muscle)

where they can be either oxidized or incorporated into proteins
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via protein synthesis(3). The tissue distribution of enzymes

involved in BCAA catabolism and oxidation (i.e. branched chain

amino transferase (BCAT) and branched chain amino acid

dehydrogenase (BCKDH) complex) differs between humans

and rats(4,5). Specifically, total activity of both BCAT and BCKDH

enzymes is lower in humans than rats, and distribution of

BCKDH (oxidative) capacity among body tissues in humans is

greatest in skeletal muscle(4–6). In addition to serving as amino

acid substrates for protein synthesis, the BCAA have long been

thought to have a unique role in the regulation of skeletal muscle

protein turnover. Testing of the effects of BCAA on muscle

protein synthesis (MPS) and muscle protein breakdown (MPB)

was initially carried out on isolated rodent muscle(7,8). These

early in vitro studies found that BCAA stimulated rates of MPS

and reduced MPB. However, when the individual BCAA were

examined, the stimulatory effect onMPSwas attributed primarily

to leucine (not isoleucine or valine)(7,9). In contrast, perfusion of

isolated rodent muscle with an amino acid mixture devoid of

BCAA has no effect on MPS(10). In support of these findings,

subsequent research has determined that, of the three BCAA,

leucine appears to be a key regulator of the mechanistic target of

rapamycin (mTOR)(11), a pivotal multi-subunit complex recog-

nized for its key role in the regulation protein synthesis and

cellular growth(12). Therefore, while there are many common-

alities amongst the BCAA in terms of their structure and

metabolism, leucine appears to have a unique signalling role

amongst the BCAA.

Given the importance of BCAA, and leucine in particular, in

regulating protein turnover and mTOR signalling, it is perhaps

not surprising that dietary BCAA supplements have become a

commercially popular means of nutritional support to enhance

the response of skeletal muscle to exercise. For example, a

recent study(13) on dietary supplement use amongst fitness club

members reported that BCAA were one of the most commonly

used dietary supplements, consumed by ∼37% of the sampled

population. The popularity of BCAA supplements is largely

predicated on the notion that they can stimulate rates of MPS and

suppress rates of MPB in response to exercise, the combination

of which promotes a net anabolic response in skeletal muscle.

However, although the role of BCAA (leucine) as a growth-

regulatory signal has been known since the 1970s(7,8,10), the

specific effect of BCAA on skeletal muscle protein turnover (i.e.

the simultaneous processes of MPS and MPB) in humans is less

clear. A now seminal review by Wolfe(14) published in 2017

concluded that BCAA alone are insufficient to stimulate MPS

rates in humans. However, since publication of this review,

additional research has emerged providing evidence that BCAA

are in fact capable of stimulating rates of MPS in humans.

The purpose of this evidence-based narrative review is to

provide an update and critical appraisal of the available research

literature pertaining to studies examining the effects of BCAA on

MPS and MPB (i.e. muscle protein turnover), as well as

associated molecular signalling responses implicated in the

regulation of these processes. Emphasis is placed on studies

performed in healthy humans, both at rest and in response to

exercise, where the collective provision of isolated free BCAA

(i.e. the provision of isoleucine, leucine and valine together as

free amino acids independent of other amino acids) has been

utilized within the research study design. Readers specifically

interested in the role of leucine as a nutrient regulator of mTOR

signalling and skeletal muscle protein turnover can refer to

recent reviews on the topic(15,16).

Overview of the regulation of muscle protein turnover in
response to amino acids and exercise

The purpose of this section is to provide a brief overview of the

regulation of muscle protein turnover in response to amino acids

and acute exercise to provide context for subsequent sections of

the review examining the specific effects of BCAA on MPS, MPB

and associated molecular signalling responses in humans. For

more extensive reviews on the effects of protein/EAA and/or

exercise on muscle protein turnover and its molecular

regulation, the reader is referred to the following articles(17–21).

Muscle protein synthesis in response to amino acids and
exercise

Increases inmusclemass (i.e. muscle anabolism) are determined

by the balance between MPS and MPB; two ongoing, dynamic

and highly regulated metabolic processes. When the rate of MPS

exceeds the rate of MPB (MPS > MPB), the result is a state

of positive net protein balance (NPB) and muscle protein

accretion. Alternatively, when the rate of MPB exceeds the rate

of MPS (MPS <MPB), NPB becomes negative, leading to loss of

muscle protein. In general, the principle regulators of muscle

protein turnover in adult humans are nutrient availability and

exercise(22). In terms of nutritional factors, dietary protein-

derived amino acids are the key nutrients that support anabolic

processes via their uptake and incorporation into skeletal

muscle proteins via the process of MPS. The postprandial

stimulation of MPS following protein ingestion is transient,

lasting only a few hours(23,24), and serves to replace protein that

is lost in the fasted state. Of the proteinogenic amino acids,

the EAA, not the non-essential amino acids (NEAA), appear

largely responsible for stimulating MPS rates in humans(25–29).

The provision of a complete mixture of EAA in young adults

stimulates MPS rates in a dose-dependent manner up to 10 g

EAA(30); however, older adults display ‘anabolic resistance’

which manifests as a decreased sensitivity and responsiveness

of MPS to EAA intake(30). As noted previously, early work in

rodents(7,10) demonstrated that the independent provision of

leucine enhanced MPS to a similar extent as supplying a

complete mixture of all three BCAA. Similarly, some(31,32) but not

all(33,34) studies in humans have shown that the independent

provision of leucine is able to stimulate MPS rates. Other studies

have also demonstrated that leucine supplementation of a

protein-containing meal(35–38) or leucine-enriched EAA intake(39)

can further stimulate MPS rates in humans. Stimulation of

postprandial MPS rates in response to EAA ingestion in

humans appears contingent upon mTOR complex 1

(mTORC1) activation since administration of the mTORC1

inhibitor rapamycin blunts the postprandial stimulation of

MPS rates in response to EAA ingestion(40).

An acute bout of resistance exercise can stimulate MPS rates

for 48 h(41); however, NPB remains negative in the absence of
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exogenous amino acid provision following exercise due to a

concomitant stimulation of MPB(42,43). The consumption of

protein or EAA following resistance exercise further stimulates

post-exercise MPS rates as compared with resistance exercise

alone, and results in a positive NPB(42,43). Therefore, acute

exercise sensitizes skeletal muscle to the anabolic effects of

protein/EAA feeding(43), an effect that lasts for at least 24 h(44).

In young adults, protein ingestion stimulates MPS rates in a

dose-dependent manner up to ∼20 g (containing ∼10 g EAA)

following resistance exercise(45,46). The contraction-induced

stimulation of MPS in humans is blunted in response to the

mTORC1 inhibitor rapamycin(47), highlighting the importance

of this pathway in regulating muscle anabolism in humans.

However, studies in rodent muscle suggest that mTORC1

inhibition does not fully prevent the contraction mediated

stimulation of MPS(48–52), suggesting mTORC1-independent

mechanisms may also stimulate MPS after anabolic stimuli,

potentially involving the mitogen-activated protein kinase/

extracellular signal-regulated kinases 1/2 (MAPK/ERK1/2)

pathway(18). In addition to amino acid availability and exercise,

reduced energy availability has a strong influence on muscle

protein turnover(53). For example, reduced energy availability

reduces both basal and postprandial MPS rates(54,55) and

increases whole-body amino acid oxidation(56,57). However, a

bout of resistance exercise performed in an energy deficit can

restore MPS rates to values observed at rest in a state of energy

balance(54). Furthermore, dietary protein ingestion after resis-

tance exercise performed in an energy deficit can further

stimulate MPS above resting MPS rates in energy balance in a

dose-dependent manner(54).

As previously indicated, stimulation of MPS in response to

anabolic stimuli is primarily regulated bymTOR, an evolutionary

conserved serine/threonine kinase(58). mTOR constitutes the

catalytic subunit of two structurally different multiprotein

complexes known as mTORC1 and mTOR complex 2

(mTORC2) that ultimately serve two different functions(59).

mTORC1 serves as a central hub responsible for integrating

signals derived from nutrients, contractile activity (e.g.

exercise) and growth factors and is a key regulator of protein

synthesis and cellular growth(12). Alternatively, mTORC2

activates several pro-survival pathways and governs cytoske-

letal behaviour(60). The kinase activity of mTORC1 and its

downstream targets are dynamically regulated by protein–

protein interactions and intracellular translocation and

colocalization (for review see Ref.(61)). Once activated,

mTORC1 stimulates MPS by phosphorylating the eukaryotic

initiation factor 4E-binding protein 1 (4E-BP1) and p70 S6

kinase 1 (p70S6K1). Phosphorylation of 4E-BP1 via mTORC1

results in the release of eukaryotic translation initiation factor

4E (eIF4E) from 4E-BP1 and an increase in 5 0 cap-dependent

translation of mRNA, while phosphorylation of p70S6K1 by

mTORC1 results in the phosphorylation ribosomal protein S6

(rpS6)(18). For example, Fujita and colleagues(62) reported that

EAA-carbohydrate co-ingestion stimulated MPS rates con-

comitant with an increase in Akt(Ser473) and mTOR(Ser2448)

phosphorylation, along with an increase in the phosphoryla-

tion of downstream effectors p70S6K1(Thr389) and 4E-BP1(Thr37/

46), and a decrease in eukaryotic elongation factor 2(Thr56)

(eEF2) phosphorylation in human skeletal muscle. For an

overview of key proteins and phosphorylation events

implicated in the regulation of MPS in response to amino

acids, exercise, and their combination, the reader is referred to

the following article(18).

Exactly how amino acids activate mTORC1 is an area of

intense research interest. In vitro studies have demonstrated that

increases in amino acid availability enhance mTORC1 recruit-

ment to the lysosome via the Rag GTPases, thereby allowing

lysosomal Ras homolog enriched in brain (Rheb) to stimulate

mTORC1 kinase activity(63). In human skeletal muscle, trans-

location of mTORC1 to the cell periphery (i.e. sarcolemmal

membrane) appears important to support its activation(64,65). In

support of this notion, Hodson and colleagues(66) reported that

protein–carbohydrate co-ingestion resulted in mTOR trans-

location to the cell periphery human muscle 1 h after intake,

which coincided with elevated S6K1 kinase activity. Similarly,

isolated leucine ingestion (2 g) has recently been demonstrated

to promote mTOR translocation to the cell periphery and

enhancemTOR localizationwith the lysosome in human skeletal

muscle at 30 and 60 min post-ingestion(12). In vitro studies have

identified the protein complexes GAP activity towards the Rags

(GATOR1 and GATOR2), Sestrin2, cellular arginine sensor

for mTORC1 (CASTOR1), and S-adenosylmethionine sensor

upstream ofmTORC1 (SAMTOR) as amino acid sensors (i.e. they

sense amino acid sufficiency or lack thereof) that ultimately act to

regulate mTORC1 activity(12). Of particular interest within the

context of the present review is Sestrin2, a cytosolic leucine

sensor that inhibits GATOR2, preventing lysosomal translocation

of mTORC1 during leucine insufficiency. Alternatively,

increased leucine availability results in binding of leucine to

Sestrin2, dissociating the protein from GATOR2 to relieve

mTORC1 inhibition(67,68). It is important to highlight that our

understanding of how amino acids activate mTORC1 largely

comes from in vitro studies performed in various several cell

types. The stimulation of mTORC1 activity by amino acids in

human skeletal muscle is still poorly understood.

MicroRNA are also emerging as potentially important

regulators of anabolic process in skeletal muscle(69). MicroRNA

are short (twenty to twenty-two nucleotides) non-coding RNA

that recognize the 3 0-untranslated regions of their target mRNA

substrates and silence their expression by blocking translation or

inducing transcript degradation(69). MicroRNA expression has

been shown to be acutely altered in response to exercise(70), and

both EAA(71–73) and protein(74) ingestion in human muscle.

Furthermore, the expression of some microRNAs (i.e. miR-206

and miR-499) has been reported to be inversely correlated with

MPS rates during exercise (i.e. increased MPS rates (%/h) are

associated with reduced miR-206 and miR-499 expression)(73).

While microRNA expression may be altered in response to

anabolic stimuli, the specific effect of BCAA ingestion on muscle

microRNA expression has not yet been explored.

Muscle protein breakdown in response to amino acids
and exercise

In addition to MPS, changes in MPB play a critical role in muscle

remodelling and may influence the overall anabolic response.
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Proteins throughout the body undergo continuous turnover,

which is necessary to prevent the accumulation of damaged

proteins, prevent cellular dysfunction and maintain proteostasis.

Although muscle anabolism is conventionally thought to be the

result of stimulation of MPS rates, it may also result from a

suppression of MPB(75). A number of studies have demon-

strated that an acute bout of resistance exercise stimulates MPB

rates(41,42), an effect that can be sustained for 24 h post-

exercise(41). In support of these observations, a number of

studies(76–82) have reported increases in the mRNA expression

patterns of the ubiquitin ligase muscle RING-finger protein-1

(MuRF1), a known regulator of proteolysis, in the early post-

exercise recovery period. In addition to exercise, some(83) but

not all studies(84) have demonstrated an increase in MPB rates in

response to energy restriction. Theoretically, nutritional

strategies that are able to suppress exercise-induced increases

in MPB may contribute to a more positive NPB, and therefore

facilitate the accretion of muscle mass in response to resistance

exercise. While protein/EAA intake and the resulting post-

prandial hyperaminoacidaemia stimulate MPS rates(22), amino

acids can also stimulate an increase in circulating insulin

concentration (i.e. hyperinsulinaemia)(85). Insulin is a powerful

regulator of protein turnover in humans, primarily through its

capacity to supress MPB(86), even at low circulating concen-

trations (i.e., ∼15–30 mU/l)(87,88). The stimulation of MPB that

occurs in response to resistance exercise in the postabsorptive

(i.e. fasted) state(42) may be prevented when amino acids are

administered after exercise(43). A common claim associated

with BCAA supplements within the context of exercise is that

they are ‘anti-catabolic’ (i.e. they are able to attenuate exercise-

induced increases in protein breakdown), and therefore are

able to better support the achievement of a positive NPB after

exercise(89).

The breakdownofmuscle proteins occurs via the coordination

of several systems/pathways: the ubiquitin–proteasome pathway,

autophagy-lysosome system, Ca2þ-dependent calpains and the

cysteine protease caspase enzymes. In the ubiquitin–protea-

some pathway, proteins are tagged for breakdown by ubiquitin,

leading to recognition by the 26S proteasome that digests

ubiquitinated proteins to smaller peptides that are ultimately

degraded to amino acids by peptidases(90,91). In the autophagy-

lysosome system, lysosomal machinery degrades intracellular

protein and organelles. This system is activated in muscle cells

during catabolic conditions (e.g. disuse(92) and caloric restric-

tion(93)), and is physiologically induced by both endurance(94)

and resistance exercise(95). Calpains are Ca2þ-dependent

cysteine proteases that target myofibrillar, cytoskeletal and

sarcolemmal proteins(96). Sustained increases in [Ca2þ] are

thought to be a mechanism that prevents excessive calpain

driven proteolysis(7). Caspases are a family of proteases that

have been proposed to play a role in the initial steps of MPB(97).

In skeletal muscle, Forkhead box O3 (FOXO3), a transcrip-

tional regulator of the ubiquitin ligases MuRF1 and muscle

atrophy F-box (MAFbx) involved in proteasome-dependent

muscle atrophy(98), is linked to the expression of autophagy-

related genes in vivo and in C2C12 myotubes(99,100), and

regulates both these systems(100). These protein degradation

systems are thought to work concurrently to regulate MPB in

response to a variety of conditions including exercise and

nutrition(96).

Dietary BCAA requirements and general
recommendations

BCAA represent ∼15–25% of the amino acids found in common

food sources, with protein from milk (26%), eggs (22%) and

maize (21%)(101) representing foods particularly rich in BCAA.

The current World Health Organization/Food and Agriculture

Organization/United Nations University guidelines(102,103) set

the total requirement for the BCAA at 85 mg kg−1 d−1 (leucine:

39 mg kg−1 d−1; isoleucine: 20 mg kg−1 d−1; valine: 26 mg kg−1 d−1)

for healthy adult populations. Alternatively, the mean require-

ment and population-safe level (upper limit of 95% confidence

interval) for total BCAA, based on data obtained in healthy

sedentary youngmen using tracer L-[1-13C]phenylalanine and the

indicator amino acid oxidation (IAAO) technique, has been

reported to be substantially higher; 144 and 210 mg kg−1 d−1,

respectively(104). However, themean requirement for total BCAA

is likely to be even higher amongst athletes and those who

habitually engage in exercise training, as overall daily IAAO-

derived recommended protein intake estimates appear to be

higher in younger endurance (females: ∼1·71 g kg−1 d−1(105);

males: ∼1·83 g kg−1 d−1(106)) and resistance-trained (females:

∼1·53 g kg−1 d−1(107); males: ∼2 g kg−1 d−1(108)) populations. In

support of this notion, a recent IAAO study(109) demonstrated

that BCAA are the primary rate-limiting amino acids in the greater

daily protein requirement of endurance-trained youngmen. This

increased requirement may reflect the need to replace amino

acids (BCAA in particular) that are oxidized during exercise(110),

and provide amino acid substrates to support whole-body

and skeletal muscle protein remodelling(111). Using the IAAO

technique, Kato and colleagues(106) reported a recommended

protein intake of 1·83 g kg−1 d−1 after exercise in endurance-

trained young men (n= 6), corresponding to a BCAA intake of

∼396 mg kg−1 d−1. Based on the overall daily recommended

protein intakes reported above derived from IAAO methodol-

ogy, this would equate to a BCAA intake of ∼376 mg kg−1 d−1 for

endurance-trained young females(105), ∼337 mg kg−1 d−1 for

resistance-trained young females(107), and ∼440 mg kg−1 d−1 for

resistance-trained young males(108). Although the IAAO tech-

nique has many practical advantages as a method to determine

dietary protein requirements in humans(112), there are some

potential limitations of the method. For example, the IAAO

method typically involves testing the response to mixture of free

amino acids (not intact protein) modelled after the composition

of egg protein(113). Compared with intact protein, free amino

acids result in more rapid amino acid absorption and greater

postprandial plasma amino acid availability(114). The IAAO

method applies a repeated sip-feeding protocol (i.e. hourly

protein/amino acid ingestion) that does not reflect typical food

intake patterns(113). Finally, the IAAO method does not account

for the possible role of increased dietary protein intake on

changes in protein breakdown(115). Overall, while additional

research is required to confirm these findings, individuals who

regularly engage in either resistance or endurance exercise
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training, andwho are seeking to optimize post-exercise recovery

and adaptation, may benefit from higher dietary protein (and

therefore BCAA intake) relative to their sedentary counterparts in

order to meet elevated whole-body metabolic requirements due

to training.

Branched-chain amino acid transport and availability in
circulatory and intramuscular pools

Like all dietary amino acids, the BCAA are absorbed by the small

intestinal epithelial cells, via discrete amino acid carriers/

transporters, transported to the liver via the portal vein, and

then released into systemic circulation where they can be

delivered and transported into skeletal muscle(116,117). The large

neutral amino acid (LNAA) transporter, a heterodimer composed

of L-type amino acid transporter 1 (LAT1), L-type amino

acid transporter 2 (LAT2) and its molecular chaperone CD98

(SLC7A5, SLC7A8 and SLC3A2, respectively) is responsible for

the transport of BCAA and other large neutral amino acids(118–121)

across the intestinal basolateral membrane. However, the

primary BCAA transporter in the gut is LAT2(118–121). Following

uptake across the intestinal basolateral membrane, the BCAA are

transported in the portal blood to the liver, a major site of

metabolism for most amino acids. Results from a number of

studies(6,122) suggest that the BCAA largely escape first pass

hepatic metabolism relative to other amino acids, and are instead

heavily catabolizedwithin skeletal muscle. This observationmay

relate to the low hepatic expression of the mitochondrial

BCAT isozyme in humans(5). In a now seminal study, Wahren

and colleagues(122) determined that in response to protein

(lean beef) ingestion in men, BCAA exceeded all other amino

acids regarding their escape from the splanchnic bed, arterial

concentration, and uptake by peripheral tissues (e.g. leg

muscle). Specifically, it was demonstrated that, in response to

a protein-rich meal, isoleucine, leucine and valine accounted

for >50% of the splanchnic output of amino acids while

accounting for only 20% of the protein source ingested.

Therefore, ingested BCAA appear to largely escape splanch-

nic catabolism and become predominantly available in the

circulation for uptake into peripheral tissue (i.e. skeletal

muscle). The influx of BCAA into skeletal muscle is largely

mediated by LAT1, which is dependent on the glutamine

gradient generated by the sodium-dependent neutral amino

acid transporter 2 (SNAT2)(123,124).

A common observation following the provision of BCAA

alone is a decline in the plasma concentration of other amino

acids including methionine and the aromatic amino acids(125,126).

Similarly, the provision of leucine alone results in a decline in the

plasma concentrations of isoleucine and valine(125,127,128), as well

as other amino acids (tyrosine, phenylalanine and methio-

nine)(125). However, a similar reduction in plasma amino acid

concentrations is not observed in response to the isolated

provision of isoleucine or valine(125). For example, Alvestrand

and colleagues(129) reported that a continuous intravenous

infusion of L-leucine (300 μmol min−1) to twelve healthy females

over 2·5 h decreased the concentration ofmost other amino acids

by 17–79% in plasma, and by 17–48% in the muscle intracellular

free pool, when comparedwith the other BCAA and the aromatic

amino acids. This reduction in the plasma and intramuscular

concentration of select amino acids has been taken to suggest

that provision of isolated BCAA (or leucine) suppresses protein

breakdown (and therefore the rate at which protein-bound

amino acids are released into the intracellular free pool and

circulation), and/or stimulates protein synthesis(130).

The effect of branched-chain amino acids on muscle
protein synthesis and associated molecular signalling in
humans

Protein synthesis is an extremely energy- and resource-intensive

process in growing cells(131). The effects of BCAA on MPS,

MPB and associated molecular signalling responses may be

influenced by the nutritional state of the participant when

BCAA are administered, and differ depending on whether

BCAA are ingested individually (e.g. leucine intake alone) or

collectively (e.g. isoleucine, leucine and valine) or are co-

ingested with other amino acids (e.g. as part of a complete

protein or BCAA-enriched protein supplement)(132). As the

current review is primarily focused on studies evaluating the

effects of the provision of a complete mixture of isolated BCAA,

the studies discussed in this review have provided BCAA as free

amino acids. It is important to highlight that the included studies

vary in that some have provided BCAA via intravenous

infusion(133–136) or oral consumption(2,35,76,137–145), studied

participants at rest or the response in non-exercised (i.e.

rested) muscle(2,35,76,133–137,139,145), studied participants under

post-exercise conditions(35,76,138–145), studied younger

adults(2,35,76,133–136,138–145) and studied older adults(137). The

included studies also vary in the BCAA dose and amount of

energy provided, the corresponding ratio of isoleucine, leucine

and valinewithin a given dose, nature of the control/comparator

treatment(s), and timing of sample collection. All these factors

may have implications for the study results obtained and any

subsequent conclusions drawn. A detailed overview of studies

in this review examining the effects of BCAA on MPS, MPB and/

or associated molecular signalling responses in humans is

presented in Supplementary Table 1.

Studies performed under resting conditions

A purported benefit of BCAA supplements is that they stimulate

MPS rates and promote a net anabolic effect in muscle,

particularly when coupled with resistance exercise. However,

this claim remains a contentious issue as only a limited number of

studies(133–138,141,144) have been performed in humans addressing

the effect of a complete mixture of isolated BCAA on MPS rates.

To the best of our knowledge, Louard and colleagues(134)

performed the first investigation in humans (men and women

aged 18–34 years) examining the effects of isolated BCAA on

whole-body and MPS in the overnight post-absorptive state

under resting (i.e. non-exercise) conditions. In a parallel-group

design, the BCAAwere provided to one group of participants via

intravenous infusion, and their effects were compared against

another group of participants who were infused with saline as a

control. The researchers found that infusion of BCAA for 3 h led
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to a marked increase in indices of whole-body protein synthesis

(i.e. based on measures of non-oxidative leucine disposal). At

the muscle level, BCAA infusion led to different amino acid

kinetic responses based on arteriovenous (A-V) exchange

measurements across the forearm depending on the amino acid

tracer examined (i.e., L-[ring-2,6-3H]-phenylalanine versus L-[1-
14C]-leucine). Specifically, the phenylalanine tracer showed no

increase in indices of MPS (i.e. rate of disappearance (Rd)

(nmol min−1 100 ml−1)) in response to BCAA infusion, while the

leucine tracer showed a marked increase. Based on the

phenylalanine data, the authors concluded that BCAA do not

stimulate MPS. A subsequent similar parallel group study by the

same group(135) investigated the effects of a more prolonged (16

h) overnight intravenous infusion of BCAA in the overnight

fasted state on whole-body and skeletal muscle amino acid

kinetics in both men and women (18–34 years) using the same

methodology. The results were compared against a group who

received a 4 h systemic intravenous infusion of saline. Similar

results were obtained at the whole-body and muscle level. Once

again, infusion of BCAA did not stimulate rates of MPS based on

A-V exchange measurements across the forearm using isotope-

labelled phenylalanine, suggesting the lack of a stimulatory

effect on MPS rates in their earlier study(135) was not due to an

insufficient duration of BCAA infusion.

In a crossover study design, Liu and colleagues(136) evaluated

the effects of isolated BCAA at rest, administered via intravenous

infusion in the overnight fasted state, on whole-body phenyl-

alanine flux (rate of appearance (Ra)), forearm phenylalanine

kinetics and the phosphorylation of eIF-4E-BP1 (βþ γ/αþ βþ γ

ratio) and p70S6K (β þ γ/α þ β þ γ ratio) with and without

dexamethasone treatment. In the absence of dexamethasone

treatment, infusion of BCAA improved forearm phenylalanine

net balance when assessed at 6 h post infusion. However, while

BCAA infusion increased the phosphorylation status of both

eIF4E-BP1 and p70S6K, it did not increase indices of MPS (i.e.

phenylalanine Rd (nmol min−1 100 ml−1)). The authors

concluded that BCAA act directly as nutrient signals in human

skeletal muscle to activate mRNA translation and potentiate

protein synthesis(136).

In 2016, Everman and colleagues(133) examined healthy

youngmales and females in the overnight fasted state before and

after insulin infusion to determine whether insulin stimulates

MPS in relation to the availability of BCAA alone. No differences

in MPS rates were found in response to BCAA versus saline

infusion under both basal and insulin-stimulated conditions

when MPS was assessed using the gold-standard precursor–

product approach (i.e., L-[ring-2H5]-phenylalanine incorporation

into muscle protein sampled via needle biopsy). Specifically,

mean (SD) plasma concentrations of BCAA were 282 ± 40 and

310 ± 41 μmol/l during basal and insulin infusion periods in the

saline condition, and 1059 ± 140 and 933 ± 91 μmol/l during

basal and insulin infusion periods in the BCAA condition. The

authors concluded that insulin does not stimulate MPS rates in

the presence of increased circulating levels of plasma

BCAA alone.

While the provision of BCAA via intravenous administration

does provide valuable information on their effect on muscle

protein turnover, outside of a controlled laboratory setting, this is

an uncommon and highly impractical means of administration.

Ferrando and colleagues(2) assessed the effects of orally ingested

BCAA (5·2 g leucine, 2·6 g isoleucine, 3·2 g valine), co-ingested

with carbohydrate (50 g) in the overnight fasted state, against

an iso-nitrogenous and iso-caloric carbohydrate–EAA drink

(4·0 g threonine, 3·8 g histidine, 3·2 g methionine) on leg A-V

phenylalanine balance and postprandial MPS rates in youngmen

using the precursor–product approach. Examination of leg

phenylalanine kinetics via A-V balance revealed no stimulatory

effect of BCAA on leg protein synthesis. While not statistically

significant, BCAA stimulated MPS rates (i.e. fractional synthesis

rate (FSR)) from 0·047 ± 0·002 during basal conditions to 0·093 ±

0·020 %/h in the postprandial period, while the EAA solution

stimulated MPS rates from 0·059 ± 0·017 to 0·073 ± 0·015 %/h(2).

Recently, Fuchs and colleagues(137) compared the impact of

ingesting 6 g BCAA, 6 g branched-chain ketoacids and 30 g milk

protein (containing 6 g BCAA) at rest in the overnight fasted state

on postprandial myofibrillar protein synthesis (MyoPS) rates in

older men (71 ± 1 years) using the precursor–product approach.

It was reported that ingestion of BCAA stimulated (from

0·022 ± 0·002 %/h to 0·044 ± 0·004 %/h) postprandial MyoPS

rates comparable to that elicited in response to ingestion of 30 g

milk protein (from 0·020 ± 0·002 %/h to 0·042 ± 0·004 %/h)

during the early (0–2 h) postprandial period. However, whereas

the ingestion of 30 g of milk protein was able to sustain elevated

MyoPS rates during the late (2–5 h) postprandial period

(0·039 ± 0·004 %/h), the stimulation of MyoPS rates following

isolated BCAA intake was short-lived, and not sustained during

the late postprandial period (0·024 ± 0·005 %/h)(137) (Fig. 1).

Interestingly, branched-chain ketoacid administration also

elicited a transient stimulation of MyoPS rates that was similar

to that achieved with BCAA. This work clearly demonstrates that

while isolated BCAA (and branched-chain ketoacid) intake can

stimulate postprandial MyoPS rates in older adults, the response

Fig. 1. Myofibrillar protein fractional synthesis rate (FSR; %/h) during the fasted

(basal) state and over the early (0–2 h), and late (2–5 h) postprandial period

following the ingestion of 30 g milk protein (PRO; complete source of protein

containing ∼6 g BCAA, of which 2·64 g was leucine) or 6 g branched-chain

amino acids (BCAA; 3 g leucine, 1·5 g isoleucine, 1·5 g valine) in healthy older

males. Values represent means. *Significantly different from basal; #signifi-

cantly different from BCAA at the same timepoint. Adapted from Fuchs CJ,

et al. (2019)(137).
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is transient, likely due to insufficient availability of the other

amino acids required as substrate to yield a sustained stimulation

of MyoPS rates(14).

Studies performed with resistance exercise

In 2017, Jackman and colleagues(138) reported that the oral intake

of BCAA (BCAA: 5·6 g; 1·4 g isoleucine; 2·6 g leucine; 1·6 g

valine) following an acute bout of resistance exercise performed

3 h following a standardized breakfast, stimulated 22% greater

MyoPS rates in young men over 4 h post-exercise recovery,

when compared with an energy-matched carbohydrate control.

In this study, MyoPS rates were determined via the precursor–

product approach. The greater rates of MyoPS following

BCAA intake were accompanied by enhanced phosphorylation

of Akt(Ser473), PRAS40(Thr246) and p70S6K1(Thr389) at 1 h after

consumption versus baseline only in the BCAA trial(138). These

findings are in alignment with those of Liu and colleagues(136)

who reported an increase in the phosphorylation p70S6K (βþ γ/

α þ β þ γ ratio) in response to BCAA infusion at rest. However,

Jackman and colleagues(138) noted that the stimulation of MyoPS

rates in response to BCAA intake following resistance exercise

was∼50% less than the previously reportedMyoPS response to a

dose of whey protein containing similar amounts of BCAA(46,146).

These results suggest that, while isolated BCAA ingestion can

result in greater MyoPS rates after an acute bout of resistance

exercise as compared with an energy-matched carbohydrate

control, ingestion of the full complement of EAA via high-quality

dietary protein (e.g. whey protein) intake may be required to

optimally stimulate MyoPS rates after resistance exercise (Fig. 2).

More recently, Jackman and colleagues(141) evaluated the

effects of co-ingestion of BCAA (BCAA: 6·1 g; 1·4 g isoleucine;

2·8 g leucine; 1·9 g valine) with carbohydrate (30·6 g) on MyoPS

rates after an acute bout of resistance exercise performed 3 h

following a standardized breakfast in trained young men. BCAA

co-ingestion with carbohydrate stimulated ∼15% greater MyoPS

rates over 4 h post-exercise recovery when compared with an

energy-matched carbohydrate control. In qualitative terms, this

15% increase is similar to the 22% increase in post-exercise

MyoPS rates with BCAA the authors reported previously(138), and

again suggest that isolated BCAA intake may not result in an

optimal muscle anabolic environment following resistance

exercise.

In partial contrast to the studies from Jackman and

colleagues(138,141), Moberg and colleagues(144) reported no

differences between leucine (50 mg/kg), BCAA (110 mg/kg:

25% L-isoleucine, 45% L-leucine and 30% L-valine), EAA

(290 mg/kg) and placebo (flavoured water) ingestion on

postprandial MPS rates following acute resistance exercise.

Although there were no differences between treatments on

post-exercise MPS rates, p70S6K1 activity (pmol min−1 mg−1)

increased above resting values in all four trials, such that

placebo < leucine < BCAA < EAA when assessed 90 min

following exercise. Furthermore, p70S6K1 activity after 180

min of recovery remained ∼60–95% higher in the BCAA and

EAA trials versus the placebo and leucine trial(144). Similar

findings were also observed when evaluating the phospho-

rylation status of 4E-BP1(Thr46) and 4E-BP1(Ser65) at 90 and 180

min post-exercise. Taken together, these results suggest that a

mixture of EAA promotes early signalling (90 min post-

exercise) responses associated with translation initiation to a

greater extent than BCAA; however, differences in signalling

responses between BCAA and EAA become less apparent

during the later stages (180 min) of post-exercise recovery.

A number of other studies have evaluated changes in

molecular signalling implicated in the regulation of MPS in

response to isolated BCAA intake in human muscle during

recovery after exercise(76,139,140,142,143) (see Supplementary

Table 1 for details). Collectively, these studies support

the notion that BCAA intake may further enhance

p70S6K1(Thr389)(76,139,142) and rpS6(Ser235/236)(139,142), but not

eEF2(Thr56)(139,144) phosphorylation during the early recovery

period after resistance exercise. Alternatively, the effect of

BCAA intake on mTOR(Ser2448) phosphorylation is less clear,

with one study reporting an increase(144), and other studies

reporting no difference(76,139,140) versus placebo ingestion

during recovery after resistance exercise. Overall, BCAA

intake appears to further enhance the phosphorylation status

of some proteins within the mTORC1 pathway involved in the

regulation of translation initiation of MPS in humans.

Fortification of dietary protein with a complete mixture of
BCAA

Some research has evaluated the effects of supplementing

various doses of protein with a complete mixture of BCAA on

MyoPS rates both at rest and following resistance exercise in

healthy adults(35,145,147). For example, Churchward-Venne and

colleagues(35) evaluated the effects of supplementing a ‘sub-

optimal’ dose (6·25 g) of whey protein with different doses of

leucine, as well as a mixture of BCAA (total BCAA intake: 7·73 g),

compared with a more ‘optimal’ 25 g dose of whey protein.

Ingestion of 6·25 gwhey protein supplementedwith BCAA in the

overnight fasted state did not stimulate postprandial MyoPS

rates, at rest or following acute resistance exercise, as effectively

Fig. 2. Per cent increase in post-exercise myofibrillar protein fractional

synthesis rate (FSR) versus placebo after ingestion of 20 g whey protein

isolate (containing 10 g of EAA and 4·8 g of BCAA) or 5·6 g BCAA (containing

2·6 g leucine, 1·4 g isoleucine, 1·6 g valine). Post-exercise ingestion of 20 g

whey protein isolate yields a 37% greater post-exercise myofibrillar protein FSR

compared with 0 g whey protein isolate ingestion (placebo). Post-exercise

ingestion of 5·6 g BCAA yields a 22% greater post-exercise myofibrillar protein

FSR compared with 0 g BCAA ingestion (placebo). Adapted from Jackman et al.

(2017)(138) and Witard et al. (2014)(46).
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as 25 g whey protein. Similarly, Monteyne and colleagues(145)

reported that supplementing a lower dose (18·7 g protein) of

mycoproteinwith BCAA (total: 2·5 g leucine, 1·5 g isoleucine and

1·9 g valine) failed to stimulate MPS rates, both at rest and

following resistance exercise, as effectively as a larger dose

(35·1 g protein) of mycoprotein matched for BCAA content.

Finally, although MPS rates were not assessed, Engelen and

colleagues(147) reported that adding BCAA to a soy protein meal

did not alter whole-body protein synthesis or net balance when

comparedwith a soy proteinmealwithout BCAA fortification in a

group of healthy older men studied under resting conditions.

However, adding BCAA to a soy protein meal further stimulated

whole-body protein synthesis in older men with COPD. While

the addition of a mixture of BCAA to protein (i.e. to whey or

mycoprotein) represents a different supplementation model/

strategy than isolated ingestion of all three BCAA without other

amino acids, these results further support the notion that

ingestion of an ample amount of high-quality protein containing

sufficient quantities of the full complement of amino acids

appears necessary to robustly stimulate postprandial MPS rates.

Overall, some(137,138,141) but not all(2,133,144) studies applying

the gold-standard precursor–product approach to assess MyoPS

or MPS rates following oral (as opposed to intravenous) BCAA

intake have demonstrated that BCAA can stimulate MPS rates in

humans, both at rest(137) and following resistance exer-

cise(138,141). However, the stimulation of postprandial MPS rates

following isolated BCAA intake is transient and sub-optimal

when compared with the MPS response achieved following the

ingestion of a complete protein (e.g. whey) matched for BCAA

intake but providing the full complement of amino acids.

Furthermore, the large majority of studies to date examining the

effects of BCAAonMPS rates and associatedmolecular signalling

responses have lacked an iso-caloric and/or iso-nitrogenous

EAA control (Supplementary Table 1), making it difficult to

determine whether the BCAA are more anabolic than other EAA

in human muscle. Therefore, ingestion of a sufficient dose of

high-quality dietary protein containing a complete mixture of

amino acids represents a superior option to isolated BCAA intake

for stimulating MPS rates in human muscle.

The effect of branched-chain amino acids on muscle
protein breakdown and associated molecular
signalling in humans

Studies examining the response of human skeletal muscle

protein turnover to exercise and nutritional stimuli have focused

predominantly on the response of MPS(96,148), with much less

information available on the response of MPB. This is largely due

to the technical challenges associated with obtaining dynamic

measures of MPB(96,148). As discussed, MPB is a determinant of

NPB, and therefore can influence the overall anabolic response

of muscle to nutrition and exercise interventions. The process of

MPB also provides amino acid substrate for protein synthesis in

other bodily organs and tissues, supports the repair, remodelling

and synthesis of muscle proteins, and provides amino acids for

hepatic gluconeogenesis(148). A common claim pertaining to

BCAA is that they are capable of suppressing rates of MPB during

exercise and therefore are ‘anti-catabolic’. In partial support of

this notion, a number of early in vitro studies in rodent skeletal

muscle tissue reported that BCAA reduced protein breakdown

(for review see Ref.(149)). However, only a limited number of

studies to date have examined the effects of a complete mixture

of BCAA on indices of MPB in vivo in humans, and none has

examined the effects of BCAA on MPB rates in response to

resistance exercise.

The aforementioned studies by Louard and colleagues

examining the effects of BCAA on whole-body and muscle

protein metabolic responses(134,135) included measurements of

whole-body and MPB (derived from A-V exchange measure-

ments across the forearm using isotopically labelled amino

acids). In response to a 3 h infusion of BCAA, phenylalanine flux

(Ra) was reduced by 22%, indicative of a reduction in whole-

body protein breakdown. Similar results were obtained from the

phenylalanine tracer exchange data across the forearm; that is,

muscle phenylalanine appearance (Ra) from protein breakdown

was reduced in response to BCAA infusion(134). This reduction in

protein breakdown was unlikely due to a BCAA-mediated

increase in insulin availability, as BCAA infusion did not alter

insulin concentrations. A similar ∼37% reduction in whole-body

phenylalanine flux (Ra) and decrease in forearm protein

breakdown (i.e. phenylalanine Ra) was observed by the same

researchers in response to a prolonged (16 h) overnight

intravenous infusion of BCAA(135). Alternatively, the aforemen-

tioned studies by Ferrando and colleagues(2) and Liu and

colleagues(136) failed to detect a decrease in indices of MPB in

response to BCAA administration based on A-V exchange

measurements across the leg and forearm respectively, using

isotopically labelled phenylalanine. Nonetheless, BCAA reduced

whole-body phenylalanine flux (Ra) in both studies(2,136),

suggesting a suppression of whole-body protein breakdown.

Other studies have also provided support for the notion that

BCAA may attenuate whole-body protein breakdown, as BCAA

have been reported to reduce whole-body phenylalanine flux

(Ra) during the initial hours of post-exercise recovery(138,141).

While BCAA may attenuate both whole-body and MPB, the

molecular mechanisms underpinning the anti-proteolytic effects

of BCAA are unclear.

There is some evidence(76,143) that BCAA reduce the

expression (mRNA and/or protein) of the ubiquitin ligases

MuRF-1 and MAFbx in human skeletal muscle. For example,

Borgenvik and colleagues(76) reported that BCAA (85 mg BCAA/

kg body weight: 45% leucine, 30% valine and 25% isoleucine)

reduced MAFbx mRNA expression in both resting and resistance

exercised humanmuscle, and attenuated the increase in MuRF-1

total protein expression compared with a placebo in young

adults. Similarly, Lysenko and colleagues(143) reported that BCAA

supplementation (0·1 gBCAA/kg bodyweight: 50% leucine, 25%

isoleucine and 25% valine) reduced the mRNA expression of

MAFbx (Atrogin-1) and MuRF-1 at select timepoints during

recovery from an acute bout of endurance exercise in young

endurance-trained athletes(143). Overall, a number of studies

have demonstrated that a mixture of BCAA can attenuate both

whole-body(2,134–136,138,141) as well as indices of muscle(134,135)

protein breakdown, and reduce the mRNA expression of the
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ubiquitin ligases MAFbx and MuRF-1(76,143). However, no studies

to date have assessed whether BCAA intake can suppress the

elevation in MPB rates that occurs during the post-exercise

recovery period in response to resistance exercise(41,150). Given

that insulin, even at relatively low circulating concentrations (i.e.

∼15–30 mU/l), can strongly suppress muscle proteolysis(87,88),

mixed macronutrient intake (e.g. intake of both carbohydrate

and protein) would also be expected to suppress MPB, and as

discussed, better support the stimulation of MPS rates in human

muscle.

Conclusion

The aim of this narrative review was to critically appraise the

available research literature from studies performed in humans

examining the effects of BCAA on MPS, MPB and associated

molecular signalling pathway responses. Emphasis was placed

on results from studies implementing a supplementation model

involving isolated intake of all three BCAA (i.e. the provision of

leucine, isoleucine and valine together as free amino acids,

independent of other amino acids), rather than on the effects of

leucine alone. Recent studies have demonstrated that isolated

intake of BCAA can stimulate postprandial MyoPS rates above

basal conditions at rest(137), and result in greater MyoPS rates as

compared with energy-matched carbohydrate intake during

recovery following resistance exercise(138,141). However, the

stimulatory effect of BCAA intake on postprandial MyoPS rates at

rest and after resistance exercise is transient and/or reduced

compared to the MyoPS response achieved following the

ingestion of 25–30 g of a high-quality complete protein source

containing all EAA(137,138). Along these lines, isolated BCAA

intake can enhance the activation/phosphorylation status of

some signalling proteins within the mTORC1 pathway known to

regulate translation initiation after exercise(76,136,138,139,142,144).

However, a complete mixture of all EAA (as would be contained

within high-quality dietary protein) appears to stimulate trans-

lation initiation signalling in skeletal muscle more effectively

than just the BCAA(144).

There is currently a paucity of data on the nutritional

regulation of MPB rates following exercise. To our knowledge,

no studies to date have examined the effects of isolated BCAA

intake on MPB rates following resistance exercise. Nonetheless,

BCAA appear capable of suppressing both whole-body(2,134,135)

and muscle (limb)(134,135), protein breakdown during resting (i.e.

non-exercised) conditions, and whole-body protein breakdown

during recovery after resistance exercise(138,141). The molecular

mechanisms responsible for this effect are unclear but may

partially relate to a BCAA-mediated reduction in the expression

of the ubiquitin ligases MAFbx and MuRF-1(76,143). While the

suppression of MPB after exercise may contribute to a more

anabolic environment, it is not clear that the suppression of

whole-body and/or MPB after exercise is desirable for enhanced

muscle hypertrophy, muscle remodelling and adaptation to

training, and/or post-exercise exercise recovery processes(96,132).

Overall, based on the currently available evidence, orally

ingested BCAA supplements activate molecular signalling

involved in translation initiation, and can reduce the expression

of the ubiquitin ligases MAFbx and MuRF-1. Along these lines,

BCAA appear to reduce indices of MPB at rest, and whole-body

protein breakdown both at rest and during recovery from

resistance exercise; however, their effect on resistance exercise-

induced MPB rates has not been evaluated. Although some

studies have demonstrated that BCAA can transiently stimulate

MyoPS rates, most studies to date have lacked an iso-caloric and/

or iso-nitrogenous EAA control, making it unclear whether the

BCAA are truly more anabolic than other EAA in human muscle.

The ingestion of high-quality dietary protein providing the full

complement of EAA (including the BCAA) more effectively

supports the postprandial stimulation of MPS rates than intake of

only the BCAA and is required to optimize the acute anabolic

response to exercise and nutrition.
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