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ABSTRACT
Position Statement: The International Society of Sports Nutrition 
(ISSN) presents this position based on a critical examination of the 
literature surrounding the effects of long-chain omega-3 polyunsa
turated fatty acid (ω-3 PUFA) supplementation on exercise perfor
mance, recovery, and brain health. This position stand is intended 
to provide a scientific foundation for athletes, dietitians, trainers, 
and other practitioners regarding the effects of supplemental ω-3 
PUFA in healthy and athletic populations. The following conclu
sions represent the official position of the ISSN:

(1) Athletes may be at a higher risk for ω-3 PUFA insufficiency.
(2) Diets rich in ω-3 PUFA, including supplements, are effective 

strategies for increasing ω-3 PUFA levels.
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(3) ω-3 PUFA supplementation, particularly eicosapentaenoic acid 
(EPA) and docosahexaenoic acid (DHA), has been shown to 
enhance endurance capacity and cardiovascular function dur
ing aerobic-type exercise.

(4) ω-3 PUFA supplementation may not confer a muscle hyper
trophic benefit in young adults.

(5) ω-3 PUFA supplementation in combination with resistance 
training may improve strength in a dose- and duration- 
dependent manner.

(6) ω-3 PUFA supplementation may decrease subjective measures 
of muscle soreness following intense exercise.

(7) ω-3 PUFA supplementation can positively affect various 
immune cell responses in athletic populations.

(8) Prophylactic ω-3 PUFA supplementation may offer neuropro
tective benefits in athletes exposed to repeated head impacts.

(9) ω-3 PUFA supplementation is associated with improved sleep 
quality.

(10) ω-3 PUFA are classified as prebiotics; however, studies on the 
gut microbiome and gut health in athletes are currently 
lacking.

1. Methods

ISSN position stands are invited papers the ISSN editors and Research Council identify as 
topics of interest to our readers that need position stands to provide guidance to readers and 
the profession. Editors and/or the Research Council identify a lead author or team of authors 
to perform a comprehensive literature review. The draft is then sent to leading scholars for 
review and comment. The paper is then revised as a consensus statement and reviewed and 
approved by the Research Council and Editors as the official position of the ISSN.

2. Introduction

Like all fatty acids, polyunsaturated fatty acids (PUFAs) consist of long chains of carbon 
atoms, with a carboxyl group at one end and a methyl group at the opposite end. PUFAs are 
characterized by having two or more double bonds between carbon atoms in the fatty acid 
chain, which distinguishes them from saturated and monounsaturated fatty acids. The two 
main classes of PUFAs are omega-3 (ω-3) and omega-6 (ω-6) fatty acids. ω-3 PUFAs are 
named for the first double bond, which appears on the third carbon from the methyl group 
(the omega end) of the fatty acid chain. Notable short-chain ω-3 PUFAs are alpha-linolenic 
acid (ALA; 18:3n-3) and stearidonic acid (18:4n-3), both of which contain 18 carbon atoms 
and feature three or four carbon-to-carbon double bonds. Long-chain ω-3 PUFAs, which 
contain more than 19 carbon atoms, include eicosapentaenoic acid (EPA; 20:5n-3), docosa
pentaenoic acid (DPA; 22:5n-3), and docosahexaenoic acid (DHA; 22:6n-3) [1,2].

ω-3 PUFAs exhibit functionally important cellular roles as they are part of the 
phospholipid bilayer of cellular membranes and are precursors to bioactive signal
ing molecules. DHA is present in high concentrations in the brain, retina, and 
sperm cells, indicating not only the bioenergetic roles of ω-3 PUFAs but functional 
roles as well [3–5]. ω-3 PUFAs are anti-inflammatory, anti-arrhythmic, and anti- 
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thrombotic compared to ω-6 PUFAs, which demonstrate proinflammatory and 
prothrombotic properties. DHA and EPA serve as precursors for the production of 
mediators that downregulate inflammation, specifically resolvins, maresins, and 
protectins. These mediators modulate key controllers of inflammation, such as 
Nuclear Factor-κB (NF-kB), which, when activated, increases inflammation, and 
regulate the expression of Nuclear Respiratory Factor 1 (Nrf1), which plays a role 
in cellular defenses against oxidative [6].Consuming ω-3 PUFAs can exert protective 
effects on the cardiovascular, retinal, musculoskeletal, and cerebrovascular systems, 
and positively affect neurological disorders and conditions [7–9].

Purported sport-specific benefits of ω-3 PUFA supplementation may include 
reduced oxygen cost (e.g. improved exercise economy), immune system support, 
enhanced recovery, and improved anabolic responses to amino acids with and 
without training, especially in older adults and strength/power athletes. 
Furthermore, ω-3 PUFAs may positively influence digestive health, cognitive func
tion, and sleep quality and provide protective effects against traumatic brain 
injuries (TBI) in athletes (Figure 1).

Athletes are typically at risk of ω-3 PUFA inadequacy. For example, National 
Collegiate Athletic Association Division I football athletes have suboptimal DHA 
and EPA levels. A 2019 study of 404 collegiate football players did not find a single 
athlete with an ω-3-index (O3i), a measurement of DHA and EPA content in 
erythrocytes expressed as a percentage of total fatty acids, greater than 8%, 
which is the value associated with the lowest risk for cardiovascular disease. 
Moreover, the average O3i for all 404 participants was 4.4 ± 0.8% indicating that 
these football players could be at a higher risk for cardiovascular disease later in 
life [10]. To raise the O3i from the observed values to the target value of 8%, an 
additional daily intake of about 1.4 g of EPA and DHA is needed, either through 
increased consumption of oily fish or ω-3 PUFA supplements [11].

Figure 1. Potential health benefits of ω-3 PUFA supplementation in athletes (illustration by Stephen 
Somers, Milwaukee, WI, USA).
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3. Sources of ω-3 PUFA

Humans and other mammals can synthesize saturated fatty acids and some monounsa
turated fatty acids from carbohydrates and protein-derived carbon groups. However, they 
lack the necessary desaturase enzymes to introduce a cis double bond at the n-6 or n-3 
positions of fatty acids. As a result, ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) are 
essential nutrients that must be obtained through the diet. Humans can synthesize ω-6 
PUFA, such as arachidonic acid (AA; 20:4n-6), from linoleic acid (LA; 18:2n-6), and ω-3 
PUFA, including EPA and DHA, from ALA. Research on ALA metabolism in healthy young 
men showed that approximately 5–10% of dietary ALA was converted to EPA, while 
conversion to DHA ranged from 2 to 5% [12]. Due to the low rate of ALA conversion 
into EPA and DHA, these ω-3 PUFAs are considered conditionally essential nutrients. 
Additionally, genetic variability and sex differences in enzyme activity affect an indivi
dual’s capacity to produce ω-3 PUFAs [13].

The most effective way to consume sufficient amounts of ω-3 PUFAs is by eating oily 
fish, such as salmon, mackerel, trout, sardines, and sea bass, which are the primary dietary 
sources of EPA and DHA, along with ω-3 PUFA fortified foods and ω-3 PUFA supplements. 
Plant-based foods rich in ALA include flaxseeds and flaxseed oil, chia seeds, and walnuts 
[14]. Dietary supplements can contain various forms of ω-3 PUFAs, including natural 
triglycerides, free fatty acids, ethyl esters, re-esterified triglycerides, and phospholipids. 
Natural triglycerides are the form of ω-3 PUFAs found naturally in fish oil, whereas krill oil 
primarily contains ω-3 PUFAs in the form of phospholipids. Ethyl esters are created by 
replacing the glycerol molecule in natural triglycerides with ethanol, while re-esterified 
triglycerides are produced by converting ethyl esters back into triglycerides. Although 
esterified triglycerides, natural triglycerides, and free fatty acids have slightly higher 
bioavailability than ethyl esters, phospholipids exhibit greater bioavailability than trigly
cerides. Nevertheless, consuming all forms of ω-3 PUFAs effectively increases plasma EPA 
and DHA levels [13]. Fish oil, krill oil, and algal oil are the main sources of ω-3 PUFAs in 
dietary supplements.

3.1. Fish oil

Aside from consuming oily fish, which predominates in countries like Japan and regions of 
Scandinavia, fish oil supplementation is the most popular method of obtaining EPA and 
DHA [15]. Common sources of commercial fish oils include salmon oil, mackerel oil, 
anchovy oil, and cod liver oil, all of which contain high concentrations of ω-3 PUFAs. 
Standard fish oils typically contain 180 mg of EPA and 120 mg of DHA per 1,000 mg, 
resulting in a total ω-3 PUFA content of about 30%. Fish oil supplements have been 
supported by extensive evidence from randomized controlled trials (RCTs), as highlighted 
in reviews and meta-analyses, demonstrating cardioprotective, antithrombotic, anti- 
inflammatory, and neuroprotective benefits [16,17].

3.2. Krill oil

Krill oil is another widely used form of ω-3 PUFA supplement. It is extracted from Antarctic 
krill, a microscopic shrimp that is part of the zooplankton and forms the base of the 
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marine food chain, making it a rich source of ω-3 PUFAs [18]. Krill oil is similar to fish oil in 
that it contains DHA and EPA. In contrast to fish oil, krill oil contains most of the fatty acids 
in phospholipid form (most notably phosphatidylcholine) [19]. It is theorized that ω-3 
PUFAs in phospholipid form can aid the passage of fatty acids through the intestinal wall 
and bolster the bioavailability of these fatty acids since phospholipids make up the 
structure of the cell membrane [19]. Krill oil also contains the antioxidant astaxanthin, 
which could confer additional benefits [20]. Additionally, krill oil is generally considered to 
be less contaminated by dioxins and heavy metals compared to fish oil as krill are at the 
base of the food chain having a shorter lifespan and consume smaller organisms, which 
reduces the accumulation of toxins like dioxins and heavy metals. However, it’s important 
to note that levels of toxins in both krill oil and fish oil are typically very low due to 
purification processes during extraction.

3.3. Algal oil

Algae represent a diverse range of photosynthetic unicellular and multicellular organisms. 
Although microalgae are among the oldest life forms on Earth, recent research has 
focused on their consumption and its effects on human health [21,22]. Algal oil, which 
is rich in DHA and EPA, can be extracted from algal biomass grown in controlled 
fermentation vessels. Depending on the algae strain, algal oil often contains more DHA 
than EPA, while fish oil generally contains both DHA and EPA in a relatively balanced 
amount. Compared to fish oil, algal oil is more sustainable, has a lower risk of contami
nants typically found in ocean waters, and is entirely suitable for vegetarian diets [23,24].

3.4. Key findings ω-3 PUFA

● ω-3 PUFA (i.e. EPA and DHA) are conditionally essential nutrients.
● Fatty fish and dietary supplements are both effective in raising ω-3 PUFA levels.
● Athletes belong to the groups at higher risk of ω-3 PUFA inadequacy.

4. Consensus and findings

4.1. Aerobic exercise

Endurance-type exercise typically involves low to moderate intensity and prolonged 
duration activities that rely heavily on aerobic metabolism and require sustained endur
ance capacity. On the other hand, resistance exercise is characterized by high-intensity 
and short-duration activities that rely primarily on anaerobic metabolism and require high 
levels of strength and power. While both types of exercise have been shown to be 
beneficial for overall health and fitness [25], the nutritional requirements and supplemen
tation strategies for optimal performance can differ [26,27]. Specifically, ω-3 PUFAs have 
been shown to differentially impact resistance and endurance exercise performance with 
evidence suggesting that ω-3 PUFAs may enhance endurance capacity [28,29], primarily 
through sarcolemma [30], mitochondrial [31] and cardiovascular remodeling [32]. Early 
studies highlight potential physiological benefits of ω-3 PUFAs, such as enhanced red 
blood cell deformability (RCD) in hypoxic conditions. For example, Guezennec et al. [33] 
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demonstrated that a fish oil-rich diet could prevent the typical reduction in RCD during 
exertion at altitude, suggesting improved blood flow in hypoxic environments, which may 
benefit athletes training or competing at high altitudes. Similarly, Oostenbrug et al. [34] 
examined the combination of fish oil and vitamin E on RBC characteristics in cyclists, 
noting some reduction in exercise-induced oxidative stress, despite no impact on RCD or 
performance. Nonetheless, here we discuss the role of ω-3 PUFAs from a muscle-centric 
view and how this can translate into whole-body endurance-exercise adaptations and 
performance. Key studies are summarized in Table 1.

Fish oil supplementation results in the incorporation of ω-3 PUFAs into skeletal and 
myocardial muscle membranes [35,36]. For example, four weeks of fish oil supplementa
tion (3,500 mg EPA and 900 mg DHA) increases both blood and skeletal muscle ω-3 PUFA 
content [36]. Specifically, fish oil supplementation results in changes in muscle ω −3 PUFA 
composition of skeletal muscle within two weeks [36], compared to months for adipose 
tissue [35]. Furthermore, a 12-week supplementation regimen of 3,000 mg EPA and 2,000  
mg DHA per day increases the total phospholipid content – major constituents of cell 
membranes – in both whole muscle and sarcolemma, but not in the mitochondria. 
However, sarcolemma membranes appear to be less responsive than whole muscle and 
mitochondria, likely due to the low ω-6/ω-3 PUFA ratio [30]. Importantly, the remodeling 
of the sarcolemma in response to ω-3 PUFA supplementation coincides with the cell 
membrane being the site to remodel muscle proteins after endurance exercise [37]. 
Furthermore, satellite cells, which play an important role in muscle regeneration after 
exercise, reside above the sarcolemma [38] and are activated in response to endurance 
exercise [39]. Given that ω-3 PUFAs are incorporated within the phospholipid cell mem
brane, a recent report also hypothesized that ω-3 PUFA supplementation can aid in 
muscle regeneration after exercise [40]. Finally, disuse studies reveal that incorporation 
of ω-3 PUFAs (3,000 mg EPA and 2,000 mg DHA) into mitochondrial membranes alters 
indices of mitochondrial bioenergetics, such as preserved adenosine diphosphate (ADP) 
sensitivity [31], which may subsequently impact energy metabolism during reloading. 
Collectively, these data suggest that ω-3 PUFA supplementation for a minimum of two 
weeks can remodel skeletal muscle phospholipids which may subsequently impact 
endurance capacity and performance.

Exercise economy, maximal oxygen uptake (VO2max), and lactate threshold are all 
strongly related to endurance exercise performance [41]. Furthermore, mitochondria are 
the cellular organelles responsible for energy production through oxidative phosphoryla
tion, and their number and function are critical for sustaining aerobic metabolism during 
prolonged exercise [42,43]. Specifically, the ability of skeletal muscle to consume oxygen 
during exercise is a key determinant of endurance capacity [41]. To this end, a recent 
report revealed that 12 weeks of ω-3 PUFA supplementation (2,234 mg of EPA and 916 mg 
of DHA/day) during endurance training improves the O3i, running economy, and 
increases VO2peak in amateur runners [28]. These findings are in contrast to Raastad 
et al. [44] who showed no changes in VO2max and running performance in trained soccer 
players receiving 1,600 mg of EPA and 1,040 mg of DHA per day through a 10-week 
period. These results suggest that a higher dose of ω-3 PUFAs may be required to remodel 
the phospholipid to induce ergogenic effects. However, others have demonstrated that 
3,200 mg of ω-3 PUFA (800 mg of EPA and 2,400 mg of DHA) supplementation per day 
over eight weeks increased ω-3 PUFA content of erythrocyte cell membranes, lowered 
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heart rate during incremental workloads to exhaustion, and reduced whole-body and 
myocardial O2 demand during submaximal exercise (55% VO2peak) in well-trained men 
[45]. Boss et al. [46] found that a 10-day diet rich in fish and olive oils enhanced time to 
exhaustion performance (at 80 % VO2max) but not VO2max and improved insulin sensi
tivity with a trend to improve fat oxidation in healthy young untrained men. Thus, these 
data suggest that ω-3 PUFA supplementation is associated with improved exercise 
economy and aerobic capacity.

Cardiovascular function plays a crucial role in endurance exercise as it determines the 
delivery of oxygen and nutrients to working muscles and removal of metabolic waste 
products which enhances health [47] and performance [48]. A bout of endurance exercise 
induces a response in cardiovascular function, including an increase in heart rate, stroke 
volume, and cardiac output, as well as vasodilation of blood vessels – adaptations 
essential for maintaining a steady supply of oxygen and nutrients to working muscles 
during prolonged exercise [49]. Several studies have examined the effects of fish oil and 
ω-3 PUFA supplementation on cardiovascular function and exercise performance. For 
example, low-dose fish oil supplementation (140 mg EPA and 560 mg DHA) over eight 
weeks increased the ω-3 PUFA index, reduced mean exercise heart rate, and improved 
heart rate recovery without compromising peak heart rate in trained men [50]. A follow- 
up study examining a similar dose of ω-3 PUFA supplementation (containing 140 mg EPA 
and 560 mg DHA) on repeated bouts of physiologically stressful cycling and a subsequent 
time trial in a state of fatigue found no evidence of endurance performance enhancement 
in trained males, despite elevating the ω-3 PUFA index after eight weeks [51]. However, 
twice daily supplementation with ω-3 PUFA consisting of 660 mg EPA, 440 mg DHA and 
200 mg of other acids can positively impact endothelial function and exercise perfor
mance [29]. Specifically, ω-3 PUFA supplementation increased baseline nitric oxide levels 
(NO) and flow-mediated dilation compared to placebo [29]. Additionally, there was 
a positive correlation between baseline post-intervention NO concentration and maximal 
oxygen uptake, and between ΔNO and ΔVO2max [29]. This increase in NO release in 
response to ω-3 PUFA supplementation may play a central role in cardiovascular adaptive 
mechanisms and enhanced exercise performance in cyclists, findings that also have been 
replicated in overweight participants [52]. Macartney et al. [50] showed that low-dose fish 
oil supplementation (containing 140 mg EPA and 560 mg DHA) for eight weeks improved 
heart rate recovery, indicating enhanced cardiac function in trained males. Furthermore, 
Kawabata et al. [53] reported improved exercise economy and reduced perceived exertion 
in response to eight weeks of EPA-rich fish oil (containing 914 mg EPA and 399 mg DHA) 
in recreationally active men, possibly through improved oxygen delivery. Collectively, 
these findings suggest that athletes may benefit from incorporating ω-3 PUFA supple
mentation into their diets to improve cardiovascular health; however, its direct impact on 
endurance performance remains inconsistent.

4.1.1. Key findings for aerobic exercise
•Studies have shown that ω-3 PUFA supplementation can improve running economy, 
aerobic capacity, and cardiovascular function during endurance exercise.

● ω-3 PUFA can improve cardiovascular dynamics during and after exercise as evi
denced by enhanced red blood cell deformability, endothelial function, and heart 
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rate recovery; however, their direct impact on endurance performance remains 
inconsistent.

● The incorporation of ω-3 PUFA into skeletal muscle membranes has been found to 
result in changes in muscle ω-3 PUFA composition, particularly in the sarcolemma, 
which is essential for muscle remodeling and/or regeneration after endurance 
exercise.

4.2. Body composition, strength and power

Recently, ω-3 PUFAs have been linked to various aspects of physical performance and 
recovery [54–56]. The influence of ω-3 PUFAs on various physiological processes appears 
to be mediated by their incorporation into tissue phospholipid membranes [57]. While the 
exact mechanisms remain elusive, musculoskeletal benefits may stem from a reduction in 
pro-inflammatory cytokines, enhanced neural activation, reduced activation of pathways 
involved in protein degradation, improvement of insulin sensitivity, and reduction of 
mitochondrial reactive oxygen species emission [57,58].

Growing evidence from cell systems [59,60], pre-clinical animal models [61–65], and 
humans [24,66–70] demonstrate that ω-3 PUFAs modulate muscle protein metabolism 
and may influence skeletal muscle outcomes such as fat-free mass, strength, and power, 
especially in response to nutrient (e.g. protein) and mechanical stimuli (i.e. resistance 
training). In seminal human studies, Smith et al. [68,69] showed that ω-3 PUFA ingestion 
(4 g/d, containing 3,360 mg EPA+DHA) for eight weeks altered skeletal muscle fatty acid 
composition and increased rates of mechanistic target of rapamycin (mTOR) signaling and 
muscle protein synthesis (MPS) during periods of hyperaminoacidemia in healthy, 
younger [69] and older adults [68]. Follow-up ω-3 PUFA supplementation trials have 
reported potent treatment effects on strength [70,71] and fat-free mass [70,72]. In fact, 
the effect of ω-3 PUFA supplementation on skeletal muscle outcomes in older adults has 
been thoroughly explored [70,71,73–77]. Recent meta-analyses have reported positive 
effects on muscle function or strength [73,75,76,78], with or without resistance exercise 
training (RET), and one reported a significant increase in fat-free mass [73].

Despite strong mechanistic underpinnings and preliminary data in older adults, skele
tal muscle outcome data in young adults remains less appreciated. This is partially due to 
the conflicting mechanistic evidence regarding anabolic signaling from high dose ω-3 
PUFA supplementation in young adults. McGlory and colleagues [36] reported an increase 
in the proportion of ω-3 PUFA, especially EPA, in the muscle cell following four weeks of 
high-dose fish oil (5 g/d, containing 3,500 mg EPA and 900 mg DHA), which subsequently 
led to an increased phosphorylation of mTORC1 and focal adhesion kinase (nutrient- and 
mechanically-sensitive anabolic signals, respectively). However, a more recent investiga
tion in resistance-trained young adults demonstrated that eight weeks of high-dose fish 
oil (5 g/d, containing 3,500 mg EPA and 900 mg DHA]) did not augment the MPS response 
to ingestion of 30 g of whey protein under both rested and post-exercise conditions [79]. 
Nonetheless, there appeared to be a trend for MPS to be greater in the fed state at rest (d  
= 0.77) and after exercise (d = 0.83) in the high-dose fish oil group, so it is unclear whether 
differences would have been found if the sample size was greater or if training status was 
similar between groups based on the differential baseline strength measures. While 
follow-up studies are needed to explore these complex relationships, a few studies 
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have investigated the effect of ω-3 PUFA supplementation on fat-free mass, strength, and 
power in young adults (Table 2). Herein, we review the role of ω-3 PUFA on skeletal 
muscle adaptations in young adults.

4.2.1. Body composition
One of the earliest studies employing RET with ω-3 PUFA supplementation randomized 
28 healthy, untrained young females to one of three groups: RET only (n = 8), RET plus 
high-protein (30 g/day hydrolyzed whey protein) diet (HP) + 900 mg ω-3 PUFA (HP ω-3, 
n = 10), or RET plus HP + ω-3 PUFA + 5 grams/day creatine monohydrate (n = 10) [80]. 
The study lasted eight weeks, with four weeks devoted to pre-training and four weeks 
of RET plus the dietary intervention. Although the HP + ω-3 PUFA group experienced 
the greatest increase in FFM compared to RET only (1.35 kg vs 0.38 kg), this result was 
not statistically significant (p = 0.14). FM changes were similar between groups (RET: 
−0.39 kg, HP + ω-3: −0.35 kg). In a study of 18 healthy, trained young men, Georges 
et al. [81] found that eight weeks of periodized RET with concomitant intake of 3 g/d of 
krill oil (containing 393 mg EPA and 240 mg DHA) increased FFM (1.4 kg [2.1%]); 
however, this finding was not statistically significant compared to the control, despite 
a 1.1 kg difference. After eight weeks, no between or within-group differences were 
observed for FM (PL: 0.3 kg [0.3%], ω-3: −0.6 kg [−3.6%]). Similarly, a recent10-week RET 
trial in 21 men and women demonstrated that 4.5 g/d of fish oil (containing 2,280 mg 
EPA and 1.580 mg DHA) did not differentially increase FFM compared to PL (2.0 kg 
[3.4%] vs 1.4 kg [2.4%], p = 0.46). While FM changes were similar between groups (PL: 
0.1 kg, ω-3: −1.0 kg, p = 0.09), it is notable that the between group difference was 
considered large (d = 0.84).

Studies employing aerobic training have reported no influence of ω-3 PUFA supple
mentation on FFM [52,82]. This finding is consistent with the minimal hypertrophic effects 
noted in aerobic studies. In Haghravan et al. [82], FFM was not preserved in either group 
(ω-3: −0.60%, PL: −0.34%). However, after eight weeks body fat percentage was signifi
cantly lower in the ω-3 group compared to PL (−1.24% vs − 0.33%, p = 0.009).

Of the ω-3 PUFA supplementation trials without a structured exercise regime, two 
reported significant body composition changes. Following 6 weeks of ω-3 PUFA supple
mentation (4 g/d, containing 1,600 mg EPA and 800 mg DHA), Noreen et al. [83] reported 
significant increases in FFM (0.5 kg vs −0.1 kg, p = .03) and decreases in FM (−0.5 kg vs 0.2  
kg, p = .04) compared to PL. Couet et al. [84] observed a significant reduction in fat mass 
(−0.88 kg), and a non-significant increase in LBM (0.20 kg) following 3 weeks of an 
increased consumption of fish oil (6.0 g/d, containing 1,100 mg EPA and 700 mg DHA). 
No body composition changes were noted in two other trials [85,86].

Overall, only one study out of eight reported a statistically significant difference in FFM. 
While two additional studies reported results favoring ω-3 PUFAs by at least 1%, it is 
unclear if these changes were due to supplementation or other variables (e.g. training, 
diet). The evidence to date does not support a hypertrophic benefit for ω-3 PUFA 
supplementation with or without a structured resistance training program in young 
adults.
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4.2.2. Strength and power
In cross-sectional studies, ω-3 PUFA tissue status or dietary intake has been linked to 
improved upper- and lower-body strength, such as handgrip strength [87,88], knee 
extension strength [89], peak force production [90], and 1-repetition maximum (1RM) 
leg press [91]. In fact, EPA status has been correlated with strength and power measures in 
young adults [85,87]. Additionally, the positive relationship between ω-3 PUFAs and 
strength is a consistent finding in older adults [73,75,76]. In Hayward et al. [80], 1RM 
bench press, deadlift, squat, and hip-thruster increased across all groups after four weeks 
of supplementation. However, the HP + ω-3 PUFA (containing 540 mg EPA and 360 mg of 
DHA) group performed similarly to RET only. In another study [81], the ω-3 PUFA group 
experienced a modestly larger magnitude of increase in 1RM bench press (4.2 kg vs 3.4 kg) 
and leg press (49.0 kg vs 44.3 kg). In contrast, the most recent trial reported significantly 
higher absolute 1RM (11.3 kg vs 6.3 kg, p = 0.047) and relative 1RM bench press (p = 0.011) 
as well as higher relative 1RM back squat (p = 0.045) compared to PL. Of the trials without 
a structured training component, only one reported a significant difference in strength 
[92] while the others did not [51,86,93,94]. Interestingly, all trials failed to report differ
ential effects on power [51,92,94].

Although plausible mechanisms exist for skeletal muscle hypertrophy following ω-3 
PUFA supplementation, results in young adults are inconsistent and remain unconvincing. 
The primary metabolic driver of hypertrophy is increased MPS, specifically the myofibrillar 
proteins, in response to RET and protein feeding [95]. McGlory and colleagues [79] found 
that eight weeks of fish oil supplementation failed to influence the rates of MPS following 
30 grams of whey protein ingestion with or without exercise in young trained men. Since 
this protein dose has been shown to maximize the rates of MPS [96], ω-3 PUFA supple
mentation is unable to enhance the effect beyond the already saturated muscle anabolic 
machinery. A recent cross-sectional analysis found that ω-3 PUFAs were associated with 
FFM, but only in those with low protein intake [97]. In agreement, Heileson et al. [98] 
observed that 10 weeks of RET plus 3,850 mg of EPA+DHA did not lead to significant 
differences in muscle hypertrophy compared to PL, in which participants reported an 
average daily protein intake ≥1.2 g∙kg−1. Indeed, this suggests that ω-3 PUFA supplemen
tation may only enhance FFM when habitual dietary protein intake is suboptimal, in older 
individuals susceptible to aging anabolic resistance, or during periods of muscle disuse 
[31,99].

Data from previous trials suggests that ω-3 PUFA administration can increase strength; 
however, the process of ω-3 PUFA incorporation into the muscle cell may take a minimum 
of four weeks [36], then another three to six months until improvements in strength 
plateau [70,77]. While only two studies reported a significant group x time interaction for 
strength, trials >4 weeks are strongly associated with a treatment effect favoring ω-3 
PUFA supplementation.

4.2.3. Key findings for body composition, strength and power
● ω-3 PUFA supplementation may not confer a hypertrophic benefit in young adults.
● ω-3 PUFA supplementation may improve strength in a dose- and duration- 

dependent manner, although the effect may be attenuated with RET.
● More high-quality research is warranted to investigate the effects of ω-3 PUFA 

supplementation on body composition and physical performance outcomes.
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4.3. Recovery and muscle soreness

A number of studies have assessed the effects of ω-3 PUFA supplementation with EPA 
and/or DHA on indices of skeletal muscle soreness (delayed onset muscle soreness 
[DOMS]), performance (strength and/or power output), range of motion (ROM), indir
ect measures of damage (creatine kinase [CK], lactate dehydrogenase [LDH]), and 
inflammatory markers (C-reactive protein [CRP], interleukin-6 [IL-6], tumor necrosis 
factor- α [TNF-α]) following exercise-induced muscle damage (EIMD) [100–112]. 
Collectively, results across studies suggest that DOMS may be reduced with ω-3 
PUFA supplementation. For example, Heileson et al. [103] recently demonstrated 
that four grams of DHA or EPA consumed daily for seven weeks reduced subjective 
muscle soreness (as measured using a visual analogue scale; VAS) following 20 minutes 
of downhill running and jumping lunge exercises at 48-hour post-exercise in young 
healthy males compared to placebo. However, in the same study, a combined EPA/ 
DHA supplement resulted in no statistically greater benefit compared to placebo in 
the measurement of DOMS. Another study demonstrated that subjective muscle 
soreness (as measured using VAS following a 60 minutes of downhill treadmill run
ning) was decreased with four weeks of daily supplementation with an ω-3 PUFA 
supplement containing both EPA (2,145 mg) and DHA (858 mg) at 24-hours post- 
exercise when compared to placebo in young healthy males [105]. Furthermore, 
Lembke et al. [106] and Vandusseldorp et al. [111] showed participants reported 
DOMS was lower for up to 96 hours post-exercise in an ω-3 PUFA supplemented 
group versus placebo. Finally, a study done in rugby athletes supplementing with ω- 
3 PUFA demonstrated that lower body muscle soreness had a moderate beneficial 
effect during recovery when compared to a placebo supplement [100]. Although the 
studies discussed so far have found evidence of reduced muscle soreness following 
EIMD, there are also studies using ω-3 PUFA supplementation that have not found 
differences in this outcome which could be due to study design differences, dosing 
regimens, and the types of exercise used to induce EIMD [101,102,107,109,112].

While ω-3 PUFA supplementation has demonstrated some success in lowering sub
jective DOMS [100], evidence suggests that objective measures of performance in relation 
to skeletal muscle strength and power following EIMD are less robust. Rajabi et al. [108] 
showed that the daily ingestion of two grams of ω-3 PUFA for one month maintained leg 
press muscle strength in young healthy adults compared to a reduction for those receiv
ing placebo. Furthermore, 7.5 weeks of ω-3 PUFA supplementation (6 g/d, containing 
2.000 mg EPA and 1,800 mg DHA) reduced muscle damage 60 minutes after performing 
eccentric squat exercises, as measured by the maintenance of vertical jump performance 
which was similar to pre-supplementation levels [111]. Heileson et al. [103] also observed 
that the daily ingestion of four grams of DHA and EPA for seven weeks improved leg press 
muscle strength compared to placebo in young males. In contrast, others have shown no 
beneficial effects from ω-3 PUFA supplementation on measure of muscle strength 
[101,102,105–107,110,112]. Again, these inconsistent findings across studies may be 
related to methodological differences between study designs (i.e. dosing strategies, 
types of exercise used to promote EIMD). Further to this point, minimal evidence is 
available to suggest that joint of motion is significantly affected by ω-3 PUFA supple
mentation protocols [101,106,108,110].
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Various indirect measures can be used to assess the degree of muscle damage through 
systemic blood-based biomarkers, such as CK and LDH. One study has confirmed that 
both CK and LDH were reduced 48- and 72-hours after EIMD in the ω-3 PUFA supple
mented group when compared to placebo [108]; however, other studies have not 
demonstrated the same effect [101,102,105–107]. As ω-3 PUFA supplementation is 
known to have anti-inflammatory effects, certain studies have assessed systemic blood- 
based biomarkers of inflammation after muscle-damaging exercise in those supplement
ing ω-3 PUFA. While one study found a reduction in CRP 24 hours post-exercise [106], 
other studies were not able to demonstrate differences in IL-6, TNF-α, or CRP following 
EIMD in a variety of cohorts [101,103,105].

In summary, the evidence presented above indicates that ω-3 PUFA supplementation 
protocols are somewhat equivocal in whether they are able to reduce subjective DOMS 
following EIMD; however, other more objective markers of recovery following EIMD are 
shown to be less effective than hypothesized in a variety of study designs.

4.3.1. Key findings for recovery
● ω-3 PUFA supplementation may attenuate indirect measures of muscle damage 

following intense exercise.
● ω-3 PUFA supplementation is equivocal in decreasing subjective measures of muscle 

soreness following intense exercise.
● ω-3 PUFA supplementation does not decrease measures of inflammation following 

exercise-induced muscle damage.

4.4. Immune health

While moderate exercise improves immune health, athletes who undergo high volumes 
of intense training are at a higher risk of developing illnesses such as upper respiratory 
tract infections (URTI). For instance, a 2024 study by Post et al. [113] reported that 
respiratory illness was the most common type of illness reported by Team USA athletes 
during the 2023 Pan American games. Similarly, Soligard et al. [114] reported that of the 
651 illnesses reported during the 2016 Olympic Games, 47% impacted the respiratory 
system while 21% impacted the gastrointestinal system. Moreover, endurance athletes 
such as ultramarathon runners and long-distance triathletes are frequently impacted by 
challenges to their immune system [115,116]. URTI can disturb training programs and will 
inevitably hinder performance in training and/or competition. Therefore, strategies to 
mitigate the immunological stress induced by high-volume training should be implemen
ted. Multiple nutritional ingredients have been researched for their ability to support and 
enhance the resilience of the immune system [117,118]. In this regard, ω-3 PUFA influence 
both innate and adaptive immune cells. ω-3 PUFAs have the ability to regulate cell 
signaling processes and are an integral part of the cellular membrane that can provide 
membrane fluidity while also impacting the assembly of lipid raft complexes [119,120], 
microstructures within cells with a particular rich distribution of lipids. ω-3 PUFA-derived 
metabolites such as prostaglandins, leukotrienes, thromboxanes, maresins, protectins, 
and resolvins are integral immune-regulatory molecules known as specialized pro- 
resolving mediators (SPMs) that can affect the inflammatory response to an immune 
stressor [119]. Multiple reviews cover the beneficial effects of ω-3 PUFA on the immune 
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system and how they affect immune-related diseases such as chronic inflammatory 
disease, type I diabetes, and responses to bacterial and viral infections [121–124]. In 
general, ω-3 PUFA decrease macrophage cytokine expression, increase macrophage and 
neutrophil phagocytosis to enhance microbial clearance, decrease activation of basophils, 
mast cells, and T cells, and have other effects on the various immune cell types [119]. 
Additionally, ω-3 PUFAs from fish oil have the ability to upregulate immune cell function 
by stimulating CD4 and CD8 lymphocytes, which help ward off pathogens [125]. Among 
other benefits, fish oil can provide beneficial immunomodulatory effects for infants when 
consumed postnatally [126,127], provide benefit for individuals who suffer from arthritis 
who cease nonsteroidal anti-inflammatory drug (NSAID) usage [128], improve innate 
immunity [129], promote anti inflammation [130], and can augment post-exercise 
immune function [131].

When considered in the context of challenging exercise or as part of an ongoing 
exercise stimulus, several studies have suggested that ω-3 PUFA availability enhances 
immune support. As one considers exercise-induced stress on the immune system, ω-3 
PUFA acids reduce inflammation and oxidative stress following exercise bouts [132]. 
Along these lines, de Lourdes Nahas Rodacki et al. [77] reported that supplementing 
elderly women who performed strength training with two grams per day of fish oil for 
150 days experienced similar immune cell responses in addition to also decreasing TNF-α, 
interferon-gamma (IFN-γ), IL-2, and IL-6, while IL-10 increased. In athletes, most of the 
immune outcomes assessed have been in the production of cytokines from immune cells. 
Table 3 shows evidence from studies with ω-3 PUFA supplementation’s effects on athlete 
immune response [133–144].

A variety of immune-modulating cytokines from various immune cells are affected; 
however, due to methodological differences it is difficult to formulate substantial conclu
sions on fish oil effects on immune response. A recurrent finding is the reduction in TNF-α 
after at least four weeks of 2,400 mg EPA and 1,200 mg DHA from fish oil supplementa
tion, which could also be seen with higher dosages for a shorter period of time or lower 
dosages for eight weeks [133,138,141,144]. Additionally, post-exercise/competition pro- 
inflammatory immune response is attenuated after chronic fish oil supplementation 
[134,136,141,144], which could be beneficial for athletes competing in multistage/event 
sports. In addition, krill oil supplementation has also shown to enhance peripheral blood 
mononuclear cell (PBMC)-derived interleukin-2 and natural killer cytotoxic activity after 
a cycling time trial when krill oil was supplemented for six weeks [145]. Though cod liver 
oil can improve clinical outcomes for children suffering from URTI [146], in the current 
state of the evidence, fish oil supplementation does not seem to produce any beneficial 
effects on URTI incidence in athletes due to the paucity of research. Da Boit et al. [137] 
found no differences in URTI incidence, duration, and severity after 16 weeks of ω-3 PUFA 
supplementation in trained cyclists; however, this study also incorporated vitamin D and 
whey protein in the experimental group. To our knowledge, no other studies have 
examined ω-3 FA consumption and URTI incidence.

Exercise-induced bronchoconstriction (EIB), formerly referred to as exercise-induced 
asthma, is another malady experienced by some highly trained athletes. EIB is char
acterized by coughing, wheezing, and breathlessness due to bronchoconstriction, 
which can be induced by hyperpnea in environments with cold, dry air [147]. 
Endurance athletes who typically undergo high-volume training are more susceptible 
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to EIB due to the high stress placed on the immune system and the rapid ventilatory 
responses to exercise. Epidemiological research suggests possible benefits of ω-3 
PUFAs for asthma mitigation in infancy and/or childhood due to their anti- 
inflammatory properties [148–152]. However, effects of ω-3 PUFA consumption 
through fish or fish oil on asthma symptoms in adults are inconsistent [153–156]. It 
is theorized that ω-3 PUFA consumption can ameliorate or mitigate symptoms of 
asthma in sporting conditions; however, results in athletes are scarce. In 
a randomized, crossover manner, Mickleborough [141] assessed if 3,200 mg EPA and 
2,200 g DHA in fish oil could mitigate EIB onset in elite male and female endurance 
athletes and found improved postexercise pulmonary function in the ω-3 PUFA group 
compared to the control group. One study in healthy males and females prone to 
hyperpnea-induced bronchoconstriction (HIB) showed similar reductions in HIB symp
toms as montelukast, a pharmacotherapy for asthma [157]. Contrarily, a pilot study 
showed no effects on post-eucapnic voluntary hyperpnea in recreational athletes who 
supplemented with fish oil for six weeks [143]. Further research must be conducted on 
ω-3 PUFA consumption in athletes to assess immunomodulation before or after 
exercise. Consistency in methodologies would simplify interpretations of results in 
future studies.

4.4.1. Key findings for immune health
● Many athletes can develop a compromised immune system due to the stress of high 

training volumes, which can increase the likelihood of developing acute respiratory 
infections that negatively impact their ability to train and compete.

● ω-3 PUFA supplementation can affect various immune cell responses in non-athlete, 
clinical, and athletic populations.

● Many studies conducted in athletic populations have indicated that ω-3 PUFA 
supplementation can influence the production and regulation of various inflamma
tory cytokines, which may lead to further physiological consequences for the athlete.

4.5. Cognitive and psychological health

More than half of the brain’s composition is made up of lipids and approximately one- 
third of those lipids are ω-3 PUFAs, with DHA and AA being the predominant fatty acids. 
These fatty acids are directly linked to the development of the central nervous system 
(CNS) and neural function in neonates, as they are transferred through the placenta [158]. 
Due to the limited conversion of dietary ALA to DHA, supplementation with DHA is 
essential during pregnancy and even after birth [159]. Deficiencies in ω-3 PUFAs can 
hinder neonatal and infant growth and development, potentially leading to neurological 
diseases, memory impairment, and difficulties in learning and processing [160]. Brain 
function and cell growth extend beyond prenatal development and are crucial during the 
first few years of an infant’s life. After pregnancy, it remains essential for infants to ingest 
ω-3 PUFAs for brain development, either through mother’s milk or formula enriched with 
DHA and AA [161,162]. Breastfeeding mothers who consumed 200 mg of DHA per day for 
four months gave birth to infants with higher psychomotor functioning and improved 
hand-eye coordination at 30 months of age [163]. In contrast, inadequate intake of ω-3 
PUFAs can lead to stunted learning and cognitive deficits [164].
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ω-3 PUFAs play an essential role in the phospholipid bilayer of the cell membrane, 
affecting membrane fluidity and function, which are vital for cellular transport and 
communication [165–167]. ω-3 PUFAs can also influence neurotransmitter regulation. 
Diets low in ω-3 PUFAs have been associated with reduced levels of serotonin and 
dopamine [168]. It is believed that ω-3 PUFAs contribute to the composition of mem
branes, enhancing organization, elasticity, and permeability, which can facilitate neuro
transmitter and glucose uptake in the brain [169]. EPA has been hypothesized to possess 
neuroprotective qualities due to its antioxidant and anti-inflammatory properties. It has 
been reported that larger doses of EPA and DHA dietary intake reduce platelet aggrega
tion [170] and blood pressure [171]; it stands to reason that ω-3 PUFAs may impact 
cerebral blood circulation, given their ability to cross the blood-brain barrier. It is com
monly recognized that increasing cerebral blood flow can increase the delivery of oxygen 
and nutrients to the brain, which can affect cognitive function and mental health. One 
study conducted an oxygenation and mood measurement in healthy females during an 
arithmetic test with ω-3 PUFAs supplementation and found that EPA was positively 
associated with increases in cerebral blood flow and inversely correlated with negative 
moods related to depression and dejection [172]. This suggests that ω-3 PUFAs, specifi
cally EPA, may assist in increasing oxygenation levels in the brain while also coinciding 
with increasing parameters of psychological performance. Several of these mechanisms 
could explain why ω-3 PUFAs could potentially enhance cognitive function relevant to 
athletic performance, including attention, memory, reaction time, and decision-making. 
Additionally, ω-3 PUFAs may support recovery from intense exercise by reducing inflam
mation, which could improve sleep and indirectly benefit cognitive function. Additionally, 
ω-3 PUFAs have been shown to improve stress resistance, reduce anxiety, and enhance 
mood.

Most studies on the effects of ω-3 PUFAs on cognitive function have focused on 
children, individuals with dementia, Alzheimer’s disease (AD), mild cognitive impairment 
(MCI), age-related cognitive decline, and elderly populations. Alternatively, a limited 
number of studies have investigated these outcomes in healthy young athletes (Table 4).

Fontani and colleagues [173] assessed the effects of ω-3 PUFAs on cognition in healthy 
adults using a computerized cognitive battery of tests, along with physiological responses 
measured through electroencephalogram (EEG) and electromyography (EMG) readings. 
Following 35 days of supplementation, blood levels showed a reduction in AA:EPA ratio 
with improvements in overall mood states of anger, anxiety, and depression. Cognitive 
function tests revealed a decrease in reaction time and a shift toward theta and alpha 
waves from the EEG. This is important for distinguishing mental functioning in healthy 
individuals by examining both cognitive and physiological responses to ω-3 PUFA sup
plementation. However, this study had limitations that may have implications for the 
findings, such as small and inconsistent sample size and non-counterbalanced groups.

A double-blind, counterbalanced crossover study examined the effects of EPA or DHA 
supplementation on cognition in young, healthy adults using functional magnetic reso
nance imaging (fMRI). Participants completed Stroop and working memory tasks both 
before and after 30 days of supplementation. While both groups reduced AA:EPA ratio 
levels, the EPA group showed a reduction in the anterior cingulate cortex and increases in 
precentral gyrus activation during reductions of the reaction time during the Stroop test, 
while DHA supplementation increased right precentral gyrus activation during Stroop and 
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working memory tests. The results indicated that, although there were differences in brain 
activation and cognitive performance between the respective supplements, both showed 
cognitive changes following 30 days of supplementation [174].

ω-3 PUFAs have also been evaluated in specific domains of cognitive functioning and 
executive functioning related to impulsivity. The results of cognitive testing and mood 
assessments indicated few effects, with ω-3 PUFAs associated with a decrease in risk- 
averse decisions. However, the findings suggest that ω-3 PUFAs may influence decision- 
making without being directly linked to impulsiveness [175]. In randomized controlled 
trials with larger sample sizes measuring cognition and executive function with ω-3 PUFA 
supplementation, results after 18 weeks were inconclusive regarding improvements in 
cognitive domains. However, some participants did show improved executive function, 
particularly those with initially low DHA levels [176]. Age does not appear to influence the 
potential benefits of ω-3 PUFA supplementation on cognitive performance outcomes, 
particularly in memory and executive function, throughout adulthood [177]. This high
lights the inconsistency and uncertainty in assessing the effects of ω-3 PUFAs on cogni
tion within a healthy, young demographic.

Limited studies are available measuring the efficacy of ω-3 PUFA on cognitive function 
and mood in non-diseased or clinically diagnosed populations. While the mechanisms 
underlying changes in cognitive function and mood have been studied frequently in both 
humans and animals, further research is needed on individuals who are healthy, young, 
and free from any neurological or mental diagnoses. This research is essential to better 
understand the potential benefit ω-3 PUFA supplementation has on mental functioning 
and mood in an athletic population.

4.5.1. Key findings for cognitive and psychological health
● ω-3 PUFAs are crucial for optimal brain development and functioning.
● ω-3 PUFA supplementation can increase membrane fluidity, neurotransmitter synth

esis and release, and cerebral blood flow.
● Studies in healthy, young athletes assessing the different theorized improvements in 

sport-specific cognitive functions are needed.

4.6. Traumatic brain injury

Globally, an estimated 69 million individuals experience a traumatic brain injury (TBI) 
each year [178]. A concussion is a type of TBI that is defined as a direct or indirect impact 
to the head causing neurometabolic dysregulation that is followed by a range of symp
toms which occur without the presence of a skull fracture and with negative findings on 
conventional neuroimaging (e.g. magnetic resonance imaging [MRI]) [179,180]. It is the 
cascade of neurometabolic events that are purported to cause cognitive dysfunction and 
physical symptoms [181]. Despite the high prevalence of concussions, limited effective 
treatment options are currently available and presently there are no dietary strategies or 
supplements that have been approved to aid with concussion recovery [182].

The body of evidence is growing that demonstrates nutritional strategies, such as ω-3 
PUFA supplementation, can alter the neurometabolic cascade following TBI [183–185]. 
DHA is found in high concentrations in neuronal cells and contributes to maintaining 
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brain function [186] and membrane integrity [187], while EPA acts in an anti-inflammatory 
manner [188].

Multiple pre-clinical animal models have supported the benefits of a diet enriched 
with ω-3 PUFAs to improve TBI related cognitive and neurophysiological outcomes 
[189–196]. ω-3 PUFAs provided through the diet or through injections reduced or 
attenuated neuroinflammation, neuronal death, cerebral edema, and behavioral defi
cits compared to placebo [189–192,194]. In addition, increased ω-3 PUFA concentra
tions in the brain are positively associated with time to first movement and improved 
neurological severity scores 24-hours post-TBI [197]. Mechanistically, ω-3 PUFA are 
purported to function as an antioxidant, thereby attenuating ROS induced by TBI 
[193,198], upregulating brain derived neurotrophic factor (BDNF) [196,199], and 
decreasing stress resistance and synaptic dysfunction, which may influence cognitive 
function [195,196]. In support of these mechanisms, ω-3 supplementation adminis
tered before or after a TBI can improve cognitive performance compared to controls in 
rodent models [192,194,199–201] with higher DHA doses revealing greater benefits 
[201]. These cognitive benefits can be observed early after TBI where Morris water 
maze performance and beam walking scores are improved as early as day 1 and day 2 
post-TBI, respectively [185]. Overall, multiple purported pathways and positive cogni
tive findings in animal models have demonstrated that ω-3 PUFA supplementation 
could improve recovery following TBI. Despite the promising pre-clinical findings, 
limited human clinical trials have evaluated the efficacy of ω-3 PUFA supplementation 
on concussions [184,185].

Currently, three studies have investigated the prophylactic use of ω-3 PUFA supple
ments in American football players (a sport characterized to involve repeated head 
impacts and has a higher prevalence of concussions) [202–207]. Oliver et al. [204] 
performed a randomized controlled trial where Division I NCAA American football 
players (N = 81) received either placebo, 2,000 mg/d DHA, 4,000 mg/d DHA, or 6,000  
mg/d DHA beginning prior to the off-season training until the conclusion of the 
competitive season (total of 189 days). The DHA supplement increased the proportion 
of plasma DHA in the fatty acid profile in a dose dependent manner. When results 
were collapsed across all treatment conditions, DHA attenuated increases in serum 
neurofilament light (Nf-L; a marker of axonal damage) compared to placebo. Another 
multi-site non-randomized trial had a Division I team supplement with ω-3 PUFAs 
(containing 2,000 mg/d DHA, 560 mg/d EPA, and 320 mg/d DPA) and a Division III team 
act as a control [202]. Nf-L increased over the season in the control team, while there 
was no change over time in those receiving the ω-3 PUFA supplement. These findings 
suggest that prophylactic ω-3 PUFA supplementation may be neuroprotective for 
repeated head impacts. In contrast, Mullins et al. [203] found that ω-3 PUFA supple
mentation (2442 mg/day DHA, 1020 mg/day EPA five days per week for 26 weeks), 
compared to placebo, did not attenuate the Nf-L increases or influence inflammatory 
cytokines across a NCAA Division I football season (n = 38). A recent meta-analysis of 
the three previously discussed studies found that, taken together, their results show ω- 
3 PUFA supplementation results in lower Nf-L concentrations at the end of the college 
football season compared to placebo (mean difference = −2.23 ± 0.83 pg⋅mL−1) [208]. 
Table 5 outlines studies that have assessed changes in traumatic brain injury with 
omega-3 polyunsaturated fatty acid supplementation

24 R. JÄGER ET AL.



Ta
bl

e 
5.

 T
he

 e
ffe

ct
 o

f p
ro

ph
yl

ac
tic

 ω
-3

 P
U

FA
 s

up
pl

em
en

ta
tio

n 
on

 t
ra

um
at

ic
 b

ra
in

 in
ju

ry
 in

 A
m

er
ic

an
 fo

ot
ba

ll 
pl

ay
er

s.
Au

th
or

At
hl

et
es

Pr
ot

oc
ol

/S
ea

so
n

D
ie

t 
Co

nt
ro

l
D

ur
at

io
n/

D
os

e
Ti

m
in

g
O

ut
co

m
e

O
liv

er
 e

t a
l. 

[2
04

]
N

CA
A 

D
I 

fo
ot

ba
ll

In
-s

ea
so

n 
co

m
pe

tit
io

n 
an

d 
tr

ai
ni

ng
Ye

s
27

 w
ks

/2
g 

D
H

A,
 4

g 
D

H
A 

or
 6

g 
D

H
A

D
ai

ly
↑
 p

la
sm

a 
D

H
A;

 ↓
 N

f-
L

H
ei

le
so

n 
et

 a
l. 

[2
02

]
N

CA
A 

D
I 

fo
ot

ba
ll

In
-s

ea
so

n 
co

m
pe

tit
io

n 
an

d 
tr

ai
ni

ng
Ye

s
13

1 
da

ys
/2

00
0m

g 
D

H
A,

 5
60

m
g 

EP
A,

 
32

0m
g 

D
PA

4 
tim

es
 p

er
 

w
ee

k
↑
 p

la
sm

a 
D

H
A;

 ↑
 p

la
sm

a 
EP

A;
 

↓
 N

f-
L

M
ul

lin
s 

et
 a

l. 
20

3
N

CA
A 

D
I 

fo
ot

ba
ll

Pr
e-

, i
n-

an
d 

po
st

-s
ea

so
n 

co
m

pe
tit

io
n 

an
d 

tr
ai

ni
ng

N
o

26
 w

ks
/E

PA
:1

,0
00

g 
D

H
A:

2,
40

0g
D

ai
ly

↑
 p

la
sm

a 
D

H
A;

 ↑
 p

la
sm

a 
EP

A;
 

↔
 N

f-
L

N
f-

L 
=

 n
eu

ro
fil

am
en

t 
lig

ht
.

JOURNAL OF THE INTERNATIONAL SOCIETY OF SPORTS NUTRITION 25



Currently, one randomized controlled trial is available that has investigated DHA 
supplementation (2 g/day) following a sport-related concussion in adolescents (n = 40; 
14–18 years of age). No statistically significant difference was identified between groups 
for recovery times was found [209]. However, DHA supplementation resulted in partici
pants being symptom-free five days earlier, and participants were able to begin the return 
to sport progression 4.5 days sooner than controls, which may be clinically meaningful. 
Future larger randomized controlled trials are urgently warranted to determine the 
efficacy of ω-3 PUFA supplementation.

4.6.1. Key findings for traumatic brain injury
● Approximately 69 million individuals experience TBIs globally each year.
● ω-3 PUFA supplementation may positively influence the neurometabolic cascade 

following TBIs, reducing neuroinflammation and cognitive dysfunction in animal 
models.

● In humans, a limited amount of evidence suggests that prophylactic ω-3 PUFA 
supplementation may offer neuroprotective benefits in athletes following repeated 
head impacts.

4.7. Sleep

Sleep is one of the crucial factors influencing the performance of athletes. Sufficient sleep 
is critical for muscle repair and recovery, and adequate sleep has been linked to improved 
athletic performance. Sleep is also important as it supports the immune system function, 
and helps to regulate mood and motivation to exercise. Deficiencies of ω-3 PUFAs in the 
diet have been linked to disturbances in circadian rhythm, sleep disturbances, and 
melatonin rhythm [210]. ω-3 PUFA levels can influence melatonin synthesis, where low 
levels of ω-3 PUFA consumption can decrease melatonin secretion [211]. The anti- 
inflammatory properties of ω-3 PUFAs reduce the risk of chronic diseases [212] and 
have also shown improvements in memory impairment in sleep-deprivation in rats 
[213]. DHA has been shown to directly affect sleep regulation, specifically in situations 
where there is a insufficiency in ω-3 PUFAs. A reduction in ω-3 PUFA intake through the 
diet results in a 30–50% decrease in DHA membrane content [214] and inconsistent sleep 
patterns [210]. Fatty fish consumption, a primary dietary source of ω-3 PUFAs, has been 
associated with sleep latency, daily functioning, heart rate variability (HRV) [215], and 
better quality of sleep [216]. Restricted ω-3 PUFA consumption, and the resulting 
decreased DHA concentration, can reduce the metabolism of dopamine and serotonin 
[212]. This could explain why ω-3 PUFAs are beneficial in treating major depressive 
disorders and result in decreased symptoms of depression, anxiety, and improved emo
tional regulation [217]. ω-3 PUFA contribution to combatting depression symptoms, 
including sleep disturbances, can promote healthy sleep cycles. Dashti et al. [218] con
cluded that longer sleep duration correlates with lower BMI and reduced saturated fat 
intake in young adults, which supports the findings of shorter sleep cycles correlating 
with low levels of diet quality, specifically in EPA and DHA [219]. Still, limited research has 
been completed on the effects of EPA alone on sleep. However, EPA affects the produc
tion of prostaglandins, prostaglandin D2 specifically, which mediates sleep and wake 
cycles [220]. Future research is needed on EPA’s effects on sleep regulation.
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There has been some association between ω-3 PUFA levels and Obstructive Sleep 
Apnea Syndrome (OSA). Low levels of DHA and EPA have been associated with OSA 
[221], which often results in elevated inflammatory markers [222] and cardiovascular 
comorbidities [223]. Concentrations of ω-3 PUFAs in patients with obesity who suffer 
from OSA showed a positive relationship between sleep efficiency and rapid eye 
movement (REM) sleep [224]. However, in patients with chronic insomnia ω-3 PUFA 
supplementation had no effect on the quality of sleep, sleep-wake cycle, or melato
nin production [225]. The effects of ω-3 PUFA supplementation on sleep outcomes in 
individuals with clinical sleep disorders has not been fully elucidated and more 
research is required.

Some positive effects have been observed with dietary ω-3 PUFA supplementation in 
healthy populations with no preexisting sleep disorders or comorbidities [226]. Sixty days 
of 2.5 g/d of EPA plus DHA supplementation is sufficient to decrease daytime sleepiness in 
deployed U.S. soldiers [227]. Children’s sleep research findings show that increases in ω-3 
PUFA DHA can reduce wake times during the night and improve overall sleep wellness 
[228]. Similar findings have been observed in healthy adolescents where improved sleep 
timing and sleep duration have been observed with ω-3 PUFA supplementation, specifi
cally when supplementation induces increased plasma DHA levels [229].

4.7.1. Key findings for sleep
● ω-3 PUFA supplementation has been linked to improved sleep quality in some 

studies.
● ω-3 PUFA supplementation may help increase sleep quality due to anti-inflammatory 

properties and effects on neurotransmitters like dopamine and serotonin, 
a precursor of melatonin, which helps regulate sleep-wake cycles.

● However, inconsistency of results indicates more research is needed to fully under
stand the relationship between ω-3 PUFA supplementation and sleep.

4.8. Gut health

The classic definition of a prebiotic refers to non-digestible carbohydrates that specifically 
support the growth of health-promoting bacteria that colonize the host’s gastrointestinal 
tract [230]. However, based on recent scientific advances and clinical research, the 
International Scientific Association for Probiotics and Prebiotics (ISAPP) updated its defi
nition of a prebiotic in 2017 to potentially include non-carbohydrate substances, such as 
ω-3 PUFAs [231]. A prebiotic is now defined as a substrate that is selectively utilized by 
host microorganisms, conferring a health benefit [231]. For a substance to be considered 
a prebiotic, it must be utilized by live microorganisms in a way that improves host health.

Exercise-induced gastrointestinal symptoms are common across many sports, particu
larly in endurance events. In long-distance runners, cyclists, and triathletes, the prevalence 
of these symptoms can reach up to 70% [232]. Commonly reported symptoms include 
diarrhea, vomiting, nausea, and abdominal cramping [233]. During maximal exercise, 
splanchnic blood flow can be reduced by as much as 80% [234], as blood is redirected 
from the gut to the exercising muscles to meet the increased demand for oxygen and 
nutrients. This shift in blood flow can lead to the opening of tight junctions in the gut 
lining, which increases mucosal permeability and may allow harmful substances to enter 
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the bloodstream (Figure 2). Consequently, this can trigger increased inflammation and 
contribute to gut dysbiosis [235].

Compared to sedentary individuals, athletes tend to have a gut microbiota with 

a higher abundance of health-promoting bacterial species, increased microbial diver
sity, and enhanced functional metabolic capacity. Exercise also stimulates the growth 
of bacteria that can modulate mucosal immunity and improve gastrointestinal barrier 
function [236]. Additionally, supplementation with probiotics (live bacteria) has been 
shown to support immune and digestive health in athletes [237].

ω-3 PUFA intake and circulating levels have been linked to improvements in gut 
microbiome composition, particularly an increase in alpha diversity, which refers to 
the variety of microbial species in the gut [238,239]. ω-3 PUFAs also promote 
increases in the abundance of Lachnospiraceae, a family of bacteria that are 
among the most abundant taxa in the gut microbiota [239]. Lachnospiraceae are 
known for their anti-inflammatory properties and play a key role in maintaining the 
integrity of the gut barrier through the production of short-chain fatty acids such 
as butyrate and acetate [239,240]. Butyrate plays a critical role in gut health by 
serving as an energy source for colonocytes. It also exerts anti-inflammatory and 
immune-modulating effects and helps maintain the intestinal barrier function. 
Butyrate supports gut epithelial cell proliferation and differentiation, further pro
moting a healthy gut environment and potentially providing protection from 
exercise-induced leaky gut.

Figure 2. Prolonged maximal exercise can induce leaky gut (adapted from Dr. Jeremy Townsend).
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4.8.1. Key findings for gut health
● ω-3 PUFA are prebiotics and supplementation may improve the composition of the 

gut microbiome
● High-intensity exercise might cause leaky gut resulting in inflammation and gut 

dysbiosis.
● While early studies indicate potential benefits of ω-3 PUFA supplementation on gut 

microbiome composition, studies in exercising athletes are needed.

5. Final summary and conclusions

The following 10 points constitute the Position Statement of the Society. They have been 
approved by the Research Committee of the Society:

(1) Athletes may be at a higher risk for ω-3 PUFA insufficiency.
(2) Diets rich in ω-3 PUFA, including supplements, are effective strategies for increas

ing ω-3 PUFA levels.
(3) ω-3 PUFA supplementation, particularly eicosapentaenoic acid (EPA) and docosa

hexaenoic acid (DHA), has been shown to enhance endurance capacity and 
cardiovascular function during aerobic-type exercise.

(4) ω-3 PUFA supplementation may not confer a muscle hypertrophic benefit in 
young adults.

(5) ω-3 PUFA supplementation in combination with resistance training may improve 
strength in a dose- and duration-dependent manner.

(6) ω-3 PUFA supplementation may decrease subjective measures of muscle soreness 
following intense exercise.

(7) ω-3 PUFA supplementation can positively affect various immune cell responses in 
athletic populations.

(8) Prophylactic ω-3 PUFA supplementation may offer neuroprotective benefits in 
athletes exposed to repeated head impacts.

(9) ω-3 PUFA supplementation is associated with improved sleep quality.
(10) ω-3 PUFA are classified as prebiotics; however, studies on the gut microbiome and 

gut health in athletes are currently lacking.
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