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Abstract 

Cardiolipin, a unique phospholipid predominantly present in the inner mitochondrial membrane, is critical for main-
taining mitochondrial integrity and function. Its dimeric structure and role in supporting mitochondrial dynamics, 
energy production, and mitophagy make it indispensable for skeletal muscle health. This review provides a compre-
hensive overview of cardiolipin biosynthesis, remodeling processes, and essential functions within mitochondria. We 
explore the influences of cardiolipin on the stability of the mitochondrial complexes, cristae formation, and calcium 
handling, all of which are vital for efficient oxidative phosphorylation and muscle contraction. Skeletal muscle, with its 
high energy demands, is particularly dependent on cardiolipin for optimal performance. We discuss the impact 
of aging on cardiolipin levels, which correlates with a decline in mitochondrial function and muscle mass, contribut-
ing to conditions such as sarcopenia. Furthermore, we examined the relationship between cardiolipin and endurance 
exercise, highlighting the effects of exercise-induced increase in cardiolipin levels on the improvement of mitochon-
drial function and muscle health. The role of Crls1 in cardiolipin synthesis has been emphasized as a potential thera-
peutic target for the treatment of sarcopenia. Increasing cardiolipin levels through gene therapy, pharmacological 
interventions, or specific exercise and nutritional strategies holds promise for mitigating muscle atrophy and promot-
ing muscle regeneration. By focusing on the multifaceted role of cardiolipin in mitochondria and muscle health, we 
aimed to provide new insights into therapeutic approaches for enhancing muscle function and combating age-
related muscle decline.

Keywords  Cardiolipin, Mitochondrial function, Skeletal muscle, Sarcopenia, Oxidative phosphorylation, Crls1, 
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Graphical Abstract
Cardiolipin and Crls1 were reduced in aged skeletal muscle, contributing to mitochondrial dysfunction and muscle 
atrophy. In aged skeletal muscle, reduced CL levels are directly associated with impaired mitochondrial respiration 
capacity and structural degradation. Upregulating CL synthesis enhances mitochondrial function by stabilizing ETC 
proteins, increasing oxygen flux, and improving cristae architecture. Therapeutic strategies, including CL-targeting 
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compounds like elamipretide and gene therapy, show promise for mitigating sarcopenia by improving mitochondrial 
bioenergetics and muscle regeneration.

Introduction
Mitochondria are indispensable organelles in eukaryotic 
cells that are primarily known for their role in energy 
production via oxidative phosphorylation (OXPHOS) 
[1]. The structural integrity and functionality of mito-
chondria are critically dependent on various representa-
tive phospholipids found in mitochondrial membranes, 
including phosphatidylcholine (PC), phosphatidyletha-
nolamine (PE), phosphatidylinositol (PI), phosphatidic 
acid (PA), phosphatidylserine (PS), phosphatidylglycerol 
(PG), and cardiolipin (CL) [2].

CL, a unique dimeric phospholipid predominantly 
located in the inner mitochondrial membrane, is essential 
for maintaining mitochondrial membrane integrity and 
supporting the optimal function of enzymes involved in 
energy metabolism [3]. CL biosynthesis involves a multi-
step process beginning with the synthesis and transport of 
PA from the ER to mitochondria, underscoring the func-
tional interplay between these organelles [4]. In skeletal 
muscle, characterized by high energy demand, CL is par-
ticularly critical due to its roles in mitochondrial dynam-
ics, energy production, and overall muscle performance 
[5]. The mitochondrial content in skeletal muscle fibers 
ranges from 2–10% of cellular volume, depending on fiber 
type. This variability reflects the functional demands of oxi-
dative (slow-twitch) fibers, which are relatively enriched 
in mitochondria to support sustained, energy-intensive 

muscle contractions through oxidative phosphorylation. 
Alterations in the levels and composition of mitochondrial 
phospholipids, including CL, profoundly influence muscle 
function and are linked to various muscle-related condi-
tions. Exercise-induced increases in mitochondrial PC, PE, 
and CL correlate with enhanced mitochondrial efficiency 
and muscle health, whereas aging-associated declines in 
phospholipids, especially PE and CL are implicated in 
reduced aerobic capacity and muscle performance [6].

This review aims to elucidate the multifaceted role of 
CL in skeletal muscle physiology, with a particular empha-
sis on its contribution to mitochondrial dynamics, energy 
production, and muscle performance. By exploring the 
molecular mechanisms underlying CL function and its 
therapeutic potential, this work provides a framework for 
understanding its relevance in aging and muscle-related 
diseases. Advancing our understanding of CL’s role in skel-
etal muscle health could pave the way for innovative treat-
ments to combat age-related muscle decline and enhance 
muscle function across various clinical contexts.

Role of phospholipids in mitochondrial structure 
with a focus on cardiolipin
The mitochondria contain numerous phospholipids in 
various forms that support the structure and function of 
the organelle. The representative phospholipids of mito-
chondria, PC, PE, PI, PA, PS, PG, and CL [2], are present 
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in the outer and inner mitochondrial membranes, where 
they contact the ER and regulate mitochondrial dynam-
ics, mitophagy, cristae formation, and the stability of 
mitochondrial complex proteins [7–10].

PI is involved in mitophagy and mitochondrial fission 
and is synthesized in the ER before being transported 
to the mitochondria [11]. PA is synthesized in the ER 
and then transferred to the mitochondria, where it is 
used as a precursor for cytidine diphosphate diacylglyc-
erol (CDP-DAG) synthesis, or is primarily found at the 
OMM-IMM contact sites [12]. PS serves as a precursor 
for PE synthesis via PSD [13]. PC is primarily known to 
maintain the overall shape of the mitochondrial outer 
membrane. Recent studies have reported that the PC/PE 
ratio in muscles is associated with insulin sensitivity [14]. 
Additionally, exercise induces an increase in mitochon-
drial PC and PE contents [15, 16], which decreases with 
aging in skeletal muscles [17]. Mitochondrial PE plays a 
pivotal role in skeletal muscle energetics by promoting 
the formation of cristae, specialized structures that host 
electron transport system (ETS) enzymes. The conical 
shape of PE enables optimal cristae curvature, facilitat-
ing respiratory enzyme activity and enhancing oxidative 
phosphorylation and ATP production. Studies, includ-
ing Heden et  al. [16], highlight the correlation between 
increased mitochondrial PE levels and improved aerobic 
capacity, while reductions in PE impair respiratory effi-
ciency and muscle function.

CL is a unique phospholipid that plays a crucial role 
in the structure and function of several cellular compo-
nents, including mitochondrial membranes. It is a unique 
phospholipid characterized by its dimeric structure, com-
prising two phosphatidyl groups linked by a glycerol mol-
ecule, which distinguishes it from other phospholipids. 
This structure results in four fatty acid chains, making CL 
highly flexible and capable of forming a cone-like shape 
that is essential for its function in the mitochondrial 
membrane. The specific fatty acid composition of CL can 
vary, although it predominantly contains linoleic acid in 
mammalian cells, contributing to its unique properties.

This high concentration of CL in the IMM is critical for 
the structural organization and functional optimization 
of the mitochondrial membrane. Its distribution is not 
uniform; it is highly enriched in regions of high curva-
ture, such as the cristae, which are the invaginations of 
the IMM. This specific localization is crucial for its role 
in maintaining mitochondrial architecture and function.

Biosynthesis and remodeling of cardiolipin
De novo CL biosynthesis in mammals is a multi-step 
process that begins with the synthesis and transport of 
PA from the ER to mitochondria (Fig. 1). CL biosynthe-
sis and remodeling occur primarily in the mitochondrial 

inner membrane (MIM). PA is imported from the ER and 
translocated across the inner membrane space via the 
protein complex PRELID–TRIAP1 [18, 19], which poten-
tially inhibits apoptosis by interacting with cytoplasmic 
Hsp70 and Apaf1 [20]. CDP–DAG synthase TAMM41 
activates PA [21], allowing phosphatidylglycerol phos-
phate synthase (PGS1) to convert CDP–DAG to phos-
phatidylglycerol phosphate (PGP) [22]. Subsequently, 
phosphatase protein-tyrosine phosphatase mitochondrial 
1 (PTPMT1) converts PGP to PG. CL synthesis is com-
pleted when cardiolipin synthase (CRLS1) uses a second 
molecule of CDP–DAG to produce CL [23]. CL interacts 
with numerous proteins, enzymes, and metabolite trans-
porters within the IMM and can be remodeled when 
one of its four fatty acid chains is deacylated by calcium-
independent phospholipase A2-gamma (iPLA2-gamma) 
to form mono-lysocardiolipin, which is then reacylated 
by TAFAZZIN to form mature CL [24]. This remodeling 
process significantly impacts mitochondrial function and 
optimal mitochondrial activity (Fig. 1).

Importance of cardiolipin in mitochondrial 
function
CL is crucial for mitochondrial function and ensuring 
structural integrity by facilitating the tight packing of 
lipids necessary for cristae formation, which supports 
the arrangement of respiratory chain complexes and 
enhances OXPHOS [25–30]. The structural properties 
of CL significantly contribute to cristae formation [31], 
with CL accounting for approximately 18% of the inner 
mitochondrial membrane (IMM) mass [32] (Table 1 and 
Fig. 2). This distribution is crucial for its role in maintain-
ing mitochondrial architecture and function.

CL plays a critical role in maintaining mitochondrial 
cristae structure by regulating the stability of the mito-
chondrial contact site and cristae organizing system 
(MICOS) and mitochondrial complex proteins, both 
essential for proper cristae formation and function [33]. 
These structural and functional attributes of cristae, 
including their length and abundance, are closely linked 
to the efficiency of energy production in mitochondria, 
highlighting the importance of CL in optimizing mito-
chondrial bioenergetics [12, 34, 35]. In addition to its 
role in energy production, CL supports the mitochon-
drial protein dynamics. It interacts with and stabilizes 
key enzymes such as cytochrome c oxidase and ATP 
synthase, maintaining their conformation and activity 
for efficient ATP production. Furthermore, CL stabi-
lizes proteins involved in mitochondrial dynamics, such 
as mitofusins (Mfn1/2) and dynamin-related protein 1 
(Drp1) [4], which are essential for mitochondrial quality 
control and adaptation to cellular energy demands.
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Beyond energy production, CL is a key regulator of 
mitophagy, the selective removal of damaged mito-
chondria. During this process, CL is externalized to the 
outer mitochondrial membrane, acting as a signal for the 
recruitment of autophagic machinery, such as LC3A/
B/C. This regulatory function ensures cellular homeo-
stasis by preventing the accumulation of dysfunctional 
organelles [36, 37].

Mitochondrial dysfunction is a key driver of cellular 
senescence, with alterations in CL playing a central role. 

CL is critical for maintaining the structural integrity of 
mitochondrial membranes and stabilizing electron trans-
port chain (ETC) supercomplexes [38]. Depletion of CL 
disrupts mitochondrial cristae organization, impairs ETC 
efficiency, and increases reactive oxygen species (ROS) 
production. Elevated ROS levels induce oxidative dam-
age, activate DNA damage response pathways, and trig-
ger the release of pro-apoptotic factors like cytochrome 
c, collectively promoting senescence-associated pheno-
types and accelerating cellular aging.

Therapeutic strategies targeting CL have shown prom-
ise in mitigating mitochondrial dysfunction and cellular 
senescence. For example, Elamipretide, a tetrapeptide 
that binds to CL, prevents its oxidation, stabilizes ETC 
supercomplexes, and restores mitochondrial bioener-
getics. This compound has demonstrated efficacy in 
improving mitochondrial oxygen flux, reducing oxida-
tive damage, and protecting against ischemia/reperfusion 
(I/R) injury. Similarly, melatonin, a potent antioxidant, 
preserves mitochondrial integrity by scavenging ROS 
and preventing CL oxidation. By inhibiting mitochon-
drial permeability transition pore (mPTP) opening and 

Fig. 1  Synthesis of Phospholipids in association of ER to mitochondria. The endoplasmic reticulum (ER) and mitochondria share many 
proteins and lipids. The phospholipids of the mitochondria are supplied from the ER or synthesized and degraded within the mitochondria. 
Phospholipids, phosphatidic acid (PA), phosphatidylserine (PS), and phosphatidylinositol (PI) from the ER membrane, move into mitochondrial 
membranes via the mitochondrial-associated membrane (MAM). Cardiolipin Highlight the synthesis pathway for and its remodeling process, 
including enzymes like TAM41, PGPS1, iPLA2, CRLS1, and Taz. Abbreviations: PITPs; phosphatidylinositol transfer proteins, CDS; CDP-diacylglycerol 
synthase, PGP; phosphatidylglycerophosphate phosphatase, PGPS1; phsophatidylgylcerophosphate synthase1, CRLS1; cardiolipin synthase1, 
PSD; phosphatidylserine decarboxylase, PEMT; phosphatidylethanolamine N-methyltransferase, PSS1/2; phosphatidylserine synthase 1/2, VAP; 
vesicle-associated membrane protein-associated protein, iPLA2; calcium independent phospholipase 2-gamma), Taz; tafazzin. CDP-DAG; cytidine 
diphosphate diacylglycerol, PGP; phosphatidyl-glycerophosphate, PMME; phosphatidyl mono-methylethanolamine, PDME; phosphatidyl 
di-methylethanolamine

Table 1  Composition of phospholipid in inner membrane of 
mitochondria

Phospholipid Composition Exercise Aging Ref

Phosphatidylinositol 5% - -

Phosphatidylserine 3% - -

Phosphatidylcholine 40% ↑ - 78, 79

Phosphatidylethan-
olamine

34% ↑ ↓ 78–81

Cardiolipin 18% ↑ ↓ 13, 67, 79, 80
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cytochrome c release, melatonin reduces oxidative stress 
and delays senescence onset. These interventions high-
light the therapeutic potential of preserving CL integrity 
to combat aging-related mitochondrial dysfunction.

In aged skeletal muscle, reduced CL levels are directly 
associated with impaired mitochondrial respiration 
capacity and structural degradation. Studies have shown 
that upregulating CL synthesis enhances mitochondrial 
function by stabilizing ETC proteins, increasing oxygen 
flux, and improving cristae architecture [39]. This regu-
lation suppresses protein degradation mechanisms and 
promotes muscle strength, underscoring the connection 
between CL homeostasis and the prevention of senes-
cence-associated decline in skeletal muscle.

The critical roles of CL in energy production and mito-
chondria quality control underscores its significance in 
mitochondria-rich tissues like skeletal muscle, which rely 
heavily on efficient ATP generation for muscle contrac-
tion. Dysregulation of CL metabolism has been impli-
cated in several muscular disorders, including Duchenne 
muscular dystrophy, sarcopenia, and mitochondrial myo-
pathies [40–43].

Cardiolipin in muscle atrophy
Skeletal muscle, accounting for 30–40% of body weight, 
is a critical system for motility and metabolism, primarily 
deriving its energy through glycolysis and OXPHOS [44, 
45]. Owing to their high energy demands, skeletal mus-
cles are densely packed with mitochondria. Muscle atro-
phy, characterized by a loss of muscle mass and strength, 
can result from reduced protein synthesis and increased 

protein degradation, often exacerbated by mitochondrial 
dysfunction associated with aging [46–48].

Age-related muscle loss is driven by inadequate pro-
tein intake and diminished energy production efficiency, 
both linked to mitochondrial dysfunction [49–51]. 
Enhancing mitochondrial quality and function is essen-
tial to counteract this decline. CL plays an essential role 
in mitochondrial enhancement, and elevated levels of 
CL; moreover, CL synthase has been proven to be effec-
tive in preventing muscle atrophy [39]. CL, abundant in 
the inner mitochondrial membrane, is crucial for main-
taining the structure and function of protein complexes 
involved in OXPHOS and ATP production [40, 52]. This 
process highlights the significant ATP requirement for 
skeletal muscle contraction, with CL enhancing mito-
chondrial function and ATP production [53].

Mitochondrial dysfunction, including CL dysregula-
tion, is a critical contributor to sarcopenia. CL is essential 
for maintaining mitochondrial membrane integrity and 
function, with its depletion linked to impaired bioener-
getics, increased oxidative stress, and muscle atrophy. 
Targeted therapeutic approaches, such as cardiolipin-
targeting agents (e.g., Elamipretide), have shown promise 
in preclinical studies. These interventions aim to restore 
mitochondrial function, reduce oxidative stress, and sup-
port muscle regeneration. However, these strategies must 
be part of a comprehensive approach that also addresses 
other contributors to sarcopenia, such as chronic inflam-
mation, hormonal imbalances, neuromuscular degrada-
tion, and lifestyle factors.

In skeletal muscles, energy production occurs pri-
marily through OXPHOS [54], which is efficient in ATP 

Fig. 2  Cardiolipin in mitochondrial cristae. Phospholipids of inner mitochondrial membrane are composed of PE, PS, PC, PI, and CL. CL is a major 
phospholipid, mainly distributed in the cristae lumen of the inner mitochondrial membrane
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production [55]. Enhancing OXPHOS efficiency is a key 
strategy to prevent muscle atrophy [56]. This process is 
mediated  by mitochondrial complex proteins located in 
the inner mitochondrial membrane, whose stability and 
function are influenced by CL levels [57]. Increasing CL 
levels enhance both the function and expression of these 
mitochondrial proteins, making CL a promising target 
for sarcopenia treatment.

Previous studies demonstrated that enhancing OXPHOS 
improves regeneration efficiency in aged mice [43]. Ele-
vated CL levels improve the function, expression, and 
stability of mitochondrial complex proteins, thereby sup-
porting muscle regeneration and mitigating atrophy. 
Induction of CL synthesis, particularly via the cardiolipin 
synthase protein Crls1, is a key marker for muscle regener-
ation. Myogenesis, the process of muscle cell formation, is 
associated with increased expression of Crls1 and elevated 
CL synthesis [39]. Conversely, a reduction in factors like 
PTPMT1 and Crls1 leads to decreased CL levels, closely 
associated with muscle atrophy [59].

CL also regulates the function of calcium-handling pro-
teins by modulating the curvature and dynamics of skel-
etal muscle cell membranes, thereby enhancing calcium 
regulation critical for muscle contraction and relaxation. 
The expression of CL in skeletal muscle was significantly 
reduced under conditions of muscle atrophy (Table  2). 
Exercise training alters the content, composition, and dis-
tribution of CL, improving mitochondrial function and 
metabolic capacity of skeletal muscles [60, 61]. These find-
ings suggest that CL is integral to skeletal muscle improve-
ment and a potential target for treating muscle-related 
diseases or enhancing exercise performance (Fig. 3).

Stability of sarcoplasmic reticulum 
and mitochondrial membrane proteins in skeletal 
muscles
Muscle tissue stores calcium ions in the sarcoplas-
mic reticulum (SR) and releases them in response to 
action potentials, leading to muscle contraction [62]. 

Dysfunction of SR proteins may be caused by CL defi-
ciency, resulting in problems with calcium ion release 
and uptake in the SR. CL deficiency induces abnormal 
endoplasmic reticulum (ER) activation, with CL muta-
tions leading to ER dysfunction and age-related reduc-
tions in the binding and functionality of mitochondrial 
membrane proteins to the ER in skeletal muscle [63, 
64]. The relationship between the SR and mitochondria 
is crucial, with SR primarily influencing the function of 
the neuromuscular junction [65]. The SR responds to 
stimulation from nerve cells; moreover, enhancing the 
functions of the SR and mitochondria simultaneously 
may be necessary when proposing treatment methods 
through nerve cell improvement [66].The decline in SR 
function in response to nerve cell stimulation is linked 
to overall muscle dysfunction that occurs during aging 
[67]. Although there is no comprehensive research on 
improving CL to increase signals from nerve cells, vali-
dating whether improving CL can modify the structure 
and mass of the SR is critical. This appears to be closely 
related to muscle strength, which decreases with aging.

The age-dependent changes in the mitochondrial-
associated membrane (MAM) induced by CL loss was 
illustrated in Fig.  4. The schematic representation high-
lights the structural and functional alterations in mito-
chondria from young to old cells, emphasizing the role 
of CL in maintaining mitochondrial integrity and func-
tion. In young cells, mitochondria exhibit well-defined 
cristae structures, adequate levels of CL, and efficient 
ATP production by the electron transport chain which 
is organized within the cristae. Robust MAM connec-
tions facilitate effective communication and lipid transfer 
between the ER and mitochondria.

As cells age, several changes occur with CL depletion, 
subsequent cristae disruption, and decreased ATP pro-
duction. The MAM structure in aged mitochondria alters 
the association between the ER and mitochondria, pos-
sibly becoming less efficient in lipid transfer and signal-
ing. Electron microscopy images highlight the following 

Table 2  Cardiolipin abnormalities in animal model (tissues)

Tissues Conditions Amount of Cardiolipin Refs

Brain 17- old mouse; Brain mitochondrial active oxygen species production 21% decrease of total CL [82]

24-old rat; Mitochondrial dysfunction in rat brain with aging 31% decrease of total CL [83]

20-old rat; cardiolipin depletion in aged rat brain mitochondria 25% decrease of total CL [84]

Skeletal Muscle chronic muscle activity 48% CL content increase [85]

Chronic muscle disuse About 40% CL decreased

Chronic electrical stimulation 3.7fold increase of mitochondrial CL level 
than those of control

[86]

Two weeks denervation 54 ± 13% of CL contents than those of control [87]

22-month-old mouse, Total cardiolipin levels in the mitochondria of TA muscle 20% decrease of total CL [39]
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Fig. 3  Roles of Crls1 and Cardiolipin in exercise and skeletal muscle. An increase in Crls1 expression and CL levels can improve sarcopenia. 
Age-dependent decrease in CL level causes mitochondrial dysfunction. Mitochondrial dysfunction induces muscle atrophy and weakness; however, 
endurance exercise increases CL levels in aged skeletal muscles

Fig. 4  Aged-dependent dysfunction of mitochondrial-associated membrane (MAM) was induced by cardiolipin (CL) loss. The young skeletal 
muscle (left panel) shows a cross-section of mitochondria with healthy mitochondrial membranes. CL is well-distributed, supporting efficient 
interactions between the inner mitochondrial membrane (IMM), the outer mitochondrial membrane (OMM), and the endoplasmic reticulum 
(ER) via MAM regions. While the old skeletal muscle (right panel) shows significant loss of CL, disruption in mitochondrial cristae, and severely 
impaired interactions between mitochondrial membranes and MAM. CL is involved in mitochondrial dynamics and the contact of mitochondria 
with the ER. The illustration shows the increase in the distance between the mitochondrial membrane and ER membrane and the amount 
of CL in between young and old skeletal muscle. Figure partially created with BioRender.com. Abbreviations: PC; Phosphatidylcholines, PE; 
phosphatidylethanolamine, CL; Cardiolipin, ETC; Electron Transport Chain, MAM; Mitochondrial-Associated Membrane



Page 8 of 11Yoo et al. Cell Communication and Signaling           (2025) 23:36 

ultrastructural changes: in young mitochondria, cristae 
are tightly packed and well-organized, whereas in aged 
mitochondria, cristae appear swollen and less defined, 
reflecting the structural damage and functional decline 
associated with aging. The decrease in CL and subse-
quent cristae disruption plays a critical role in the decline 
of mitochondrial function with age, impacting cellular 
energy metabolism and leading to reduced ATP pro-
duction. Changes in MAM structure may affect lipid 
metabolism and calcium signaling between the ER and 
mitochondria, further contributing to cellular aging. 
Therefore, maintaining or restoring CL levels in the IMM 
could be a potential therapeutic strategy to preserve 
mitochondrial function and mitigate age-related cellular 
decline (Fig. 4) [39].

Cardiolipin and endurance exercise in skeletal 
muscle
Endurance exercises require substantial energy and oxy-
gen, and are characterized by high presence of mito-
chondria, blood vessels, and myoglobin [61, 68, 69]. To 
enhance mitochondrial quantity and energy produc-
tion, the function of the electron transport chain must 
increase, leading to a proliferation of mitochondria cris-
tae as an adaptative response [70]. In muscle tissues, 
particularly red muscles (slow-twitch fibers), the expres-
sion of Crls1 remains stable with aging, which explains 
their resistance to muscle loss [39, 71]. In contrast, white 
muscles (fast-twitch fibers) exhibit a decline in Crls1 
expression with aging, making them more suscepti-
ble to sarcopenia. Endurance exercise induces a switch 
from fast-twitch to slow-twitch muscle fibers, promot-
ing an increase in mitochondrial cristae density and CL 
content, thereby enhancing mitochondrial function [72]. 
This process is important for increasing CL levels, which 
are crucial in preventing age-related muscle loss in red 
muscles. Similarly, increasing CL in white muscles can 
prevent muscle loss and promote muscle regeneration 
[39]. While white muscles have fewer mitochondria com-
pared to red muscles, they store substantial energy and 
heavily rely on mitochondrial energy production [72]. 
Energy demand in white muscles can lead to protein 
breakdown under energy deficiency. However, increased 
CL enhances mitochondrial function, delaying or inhib-
iting protein breakdown and preventing white muscle 
atrophy [39].The exact mechanism underlying exercise-
induced Crls1 expression remains unclear, but it is well 
known that exercise increases CL levels. Increased mito-
chondrial activity owing to exercise leads to the accumu-
lation of ROS, which is cleared through processes such 
as mitophagy and mitochondrial dynamics [37, 73–75], 
with CL assisting in these processes. During endurance 
exercise, mitochondrial performance directly determines 

overall endurance capacity, with exercise enhancing the 
activity of mitochondrial complex proteins, thereby 
increasing both the quantity and functionality of slow-
twitch muscle mitochondria [76, 77]. An exercise-
induced increase in CL enhances mitochondrial activity, 
leading to improved muscle function and overall muscle 
health. This increase, along with elevated expression of 
Crls1, can mitigate age-related deficiencies, making CL 
and Crls1 promising therapeutic targets for addressing 
conditions such as sarcopenia.

Targeting Crls1 expression and cl metabolism 
for sarcopenia treatment
Sarcopenia, characterized by age-related muscle loss 
and functional decline, poses a significant challenge in 
aging populations. Although research on the therapeu-
tic potential of CL in sarcopenia is still in its early stages, 
understanding the role of CL in muscle health is criti-
cal. CL is integral to regulating mitochondrial activity in 
skeletal muscle, directly influencing muscle function and 
overall health. Emerging evidence suggests that exercise 
can increase CL levels [61], offering a potential avenue 
for mitigating sarcopenia, even though direct upregula-
tion of Crls1 expression through exercise has yet to be 
demonstrated. These findings highlight the importance 
of CL in developing exercise interventions to counteract 
sarcopenia effectively.

Enhancing Crls1  expression offers a promising thera-
peutic approach to combat sarcopenia. By upregulat-
ing Crls1 potentially replicating the beneficial effects of 
exercise on mitochondrial function. Beyond exercise-
based interventions, several targeted strategies focusing 
on CL modulation have emerged as viable options for 
addressing mitochondrial dysfunction in skeletal muscle.

One promising strategy involves CL supplementation. 
For example, Elamipretide, a tetrapeptide that binds to 
CL, has been shown to prevent its oxidation, stabilize 
ETC supercomplexes, and improve mitochondrial bio-
energetics. Preclinical studies have demonstrated its 
efficacy in enhancing mitochondrial oxygen flux, reduc-
ing oxidative stress, and supporting muscle regeneration. 
These findings position Elamipretide as a potential phar-
macological treatment for age-related muscle decline.

Another approach under investigation is gene therapy 
targeting  Crls1  expression to restore endogenous CL 
synthesis. Experimental models indicate that increas-
ing Crls1 expression can enhance mitochondrial stability, 
reduce oxidative damage, and improve muscle strength, 
particularly in aged skeletal muscle. This strategy directly 
addresses the age-related decline in CL synthesis and its 
impact on mitochondrial function.

Additionally, the activation of tafazzin, an enzyme 
responsible for CL remodeling, represents another 
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promising avenue. Tafazzin plays a critical role in opti-
mizing CL functionality by supporting mitochondrial 
cristae structure and dynamics. This process is essential 
for maintaining efficient ATP production and ensuring 
the structural integrity of mitochondria.

These strategies collectively highlight the therapeutic 
potential of modulating CL levels to restore mitochon-
drial function and mitigate sarcopenia. While still in the 
research phase, they provide valuable insights into future 
directions for clinical applications aimed at preserving 
muscle health in aging populations. Graphical abstract 
illustrates how reduced CL levels and Crls1 expression 
in aged skeletal muscle impair mitochondrial respiration 
and structure. Upregulating CL synthesis improves mito-
chondrial function by stabilizing ETC proteins, increas-
ing oxygen flux, and enhancing cristae architecture, 
offering a viable pathway to mitigate sarcopenia.

Future studies should focus on identifying the mecha-
nisms underlying the interaction between the ER and 
mitochondria, which are disrupted by CL deficiency. 
Addressing these issues could pave the way for novel thera-
peutic strategies to combat sarcopenia. In addition, explor-
ing the combined effects of exercise and pharmacological 
therapies on Crls1 expression and CL synthesis may pro-
vide a comprehensive approach to managing sarcopenia. 
Staying up to date with the latest research trends in sarco-
penia treatment and seeking expert advice will be essential 
for developing effective presentive and therapeutic meas-
ures. By targeting Crls1  expression and CL metabolism, 
future strategies could revolutionize sarcopenia treatment 
and improve muscle health in aging populations.

Conclusion and future perspectives
CL plays a crucial role in maintaining mitochon-
drial integrity and supporting essential functions such 
as energy production, mitochondrial dynamics, and 
mitophagy, all of which are vital for muscle health. Exer-
cise-induced increases in CL levels enhance mitochon-
drial efficiency and muscle function, while age-related 
declines in CL contribute to muscle deterioration. Gain-
ing a deeper understanding of CL’s role could lead to 
therapeutic strategies for muscle-related diseases like 
sarcopenia. Approaches aimed at modulating CL levels 
could significantly benefit muscle health, particularly in 
aging populations.

The gene Crls1 has emerged as a promising therapeu-
tic target for sarcopenia, offering potential applications 
in gene therapy, drug development, and the regulation of 
calcium signaling in muscle cells. Exploring Crls1 expres-
sion could also provide valuable insights for designing 
exercise-based interventions to preserve muscle health 
in older adults. However, practical applications of these 
strategies are still in the early stages of research.

Continued research efforts are essential for translat-
ing these preliminary findings into viable therapeutic 
strategies for sarcopenia. Considering the pivotal role 
of CL in mitochondrial function, several directions for 
future research may be proposed. Priority should be 
given to developing gene therapy techniques to enhance 
the expression of Crls1, which is crucial for CL synthesis. 
Additionally, investigating pharmacological agents that 
can increase CL levels or mimic its function is essential. 
Studying the effects of dietary supplements and specific 
exercise regimens in increasing CL levels in the skeletal 
muscles and understanding the interplay between nutri-
tion, exercise, and CL synthesis could lead to practical 
strategies for maintaining muscle health. Investigating 
the role of CL in mitochondrial dynamics, such as fusion, 
fission, and mitophagy, is critical for ensuring mitochon-
drial quality control and adapting to energy demands, 
particularly in aging muscle tissues. Furthermore, under-
standing how CL impacts calcium homeostasis in muscle 
cells is essential, as calcium plays a pivotal role in muscle 
contraction and relaxation. Such studies could uncover 
innovative approaches to improving muscle function and 
mitigating age-related sarcopenia. Moreover, detailed 
research on MAM proteins and phospholipids in the 
context of age-related sarcopenia is necessary. By con-
ducting in-depth studies on the structural and functional 
changes in MAMs caused by CL loss, we can improve 
our understanding of the impact of these changes on 
lipid metabolism and calcium signaling between the ER 
and mitochondria. To evaluate the effectiveness of thera-
pies targeting CL in treating sarcopenia, it is imperative 
to transition from laboratory research to clinical trials. 
Collaborative efforts between researchers, clinicians, and 
pharmaceutical companies will be crucial in translating 
these findings into real-world treatments. This knowl-
edge will unveil new therapeutic targets, research direc-
tions and provide new possibilities for the treatment and 
improvement of sarcopenia.

Therefore, future research can provide a deeper under-
standing of the role of CL in muscle health and develop 
effective strategies for combating sarcopenia and other 
muscle-related diseases.
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