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Abstract
Purpose To compare strength and muscle mass development between conventional resistance training (RT) and a combined 
resistance training with neuromuscular electrical stimulation group (RT + NMES).
Methods Searches of EBSCO, GoogleScholar, PubMed, and ResearchGate were conducted for studies that met the inclusion 
criteria of being a randomized controlled trial comparing RT in isolation with NMES and RT being done simultaneously. 
Effect sizes were calculated as the standard mean difference (SMD) and meta-analyses were computed using random effects 
models. Thirteen studies were included in the analyses.
Results When comparing strength gain, there was a favorable effect towards superimposed training (SMD: 0.31; 95% 
CI 0.13–0.49; p = 0.02; I2 = 73.05%) with similar results seen for muscle mass (SMD: 0.26; 95% CI 0.04–0.49; p = 0.02; 
I2 = 21.45%).
Conclusion Use of NMES during RT results in greater gains in strength and muscle mass compared to RT performed in 
isolation. Incorporation of NMES into RT protocols may represent a more effective strategy to improve muscle strength 
and muscle mass. Future studies should explore whether use of NMES concurrently with RT may have additive effects on 
metabolic and/or cardiovascular health.
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Introduction

Resistance training (RT) defined as dynamic or static mus-
cular contractions against external resistance (Philips 2007), 
has long been shown to improve body composition (Can-
dow and Burke 2007; Fyfe et al. 2022; Grgic et al. 2022), 
increase muscular strength (Fyfe et al. 2022; Currier et al. 
2023; Grgic et al. 2022) and is recommended for all ages 
(Grgic et al. 2020; Stricker et al. 2020; Fragala et al. 2019; 
McQuilliam et al. 2020; Lesinski et al. 2020). Similarly, 
the use of neuromuscular electrical stimulation (NMES) 
has also been shown to increase strength and muscle mass 
in upper and lower body musculature (Mukherjee et al. 
2023; Porcari et al. 2002; Corso et al. 2006; Jandova et al. 
2020). NMES presents a cost effective, noninvasive, alter-
native strategy to induce involuntary muscle contractions 
(Dehail et al. 2008), whereas traditional resistance training 
utilizes voluntary muscle contractions. Analogous to the 
action potential mechanism involved in voluntary muscle 
contraction, the electrical current from NMES stimulates 
motor axons and/or intramuscular nerve endings (Hult-
man et al. 1983; Gobbo et al. 2014), causing changes to the 

muscle membrane potential, which in turn causes calcium 
to be released, activating the signaling cascade that leads 
to skeletal muscle contraction (Silverthorn 2020). Notably, 
NMES has a unique form of motor unit recruitment that 
appears to be random and nonselective in nature (Bickel 
et al. 2011; Maffiuletti 2010), whereas resistance training 
recruits smaller motor units, increasing in size until enough 
motor units are recruited for the force generated for muscle 
contraction (Henneman et al. 1965). Given the altered motor 
unit recruitment seen with NMES, it is possible that pro-
portionally, a relatively larger number of large motor units 
may be recruited at any given quantity of force compared to 
voluntary contractions. This is due to larger diameter axons 
being excited easily from electrical stimuli with NMES, even 
at low intensities (Maffiuletti 2010). Moreover, engaging 
larger motor units, which are generally composed of highly 
glycolytic type II fibers can be challenging with voluntary 
exercise among orthopedic patients who might not be capa-
ble of performing high-load resistance training due to injury 
or a recent surgical operation (Hainaut and Duchateau 1992; 
Silverthorn et al. 2020; Maffiuletti 2010). Therefore, com-
bining voluntary exercise with NMES could offer a potential 



European Journal of Applied Physiology 

advantage in improving strength and/or muscle mass in com-
parison to conventional voluntary exercise.

While a recent meta-analysis comparing NMES to resist-
ance training has shown similar improvements in muscle 
strength, a small but not statistically significant effect 
favoring superimposed NMES on RT was noted (Happ and 
Behringer 2022). The authors determined that statistical 
power was limited in this study due to the small sample 
size, and further study was needed. To our knowledge, there 
are no systematic review and meta-analysis studies to date 
that evaluate the effectiveness of using NMES with RT. To 
address this gap, this systematic review and meta-analysis 
aimed to assess the effects of superimposed NMES on resist-
ance training induced increases in muscle strength and mus-
cle mass compared to conventional RT.

Methods

Electronic search strategy and eligibility criteria

This meta-analysis and systematic review was performed in 
accordance with the Cochrane Collaboration (Higgins et al. 
2022) and Preferred Reporting Items for Systematic Review 
and Meta-Analysis (PRISMA) guidelines (Page et al. 2021). 
The protocol of the study was registered in the International 
Prospective Register of Systematic Reviews (PROSPERO; 
CRD42022341872). Randomized controlled trials and 
intervention studies performed in humans that examined 
the effect of superimposing NMES on RT-induced mus-
cle contractions as it relates to muscle strength and muscle 
mass were included. A computerized search was performed 
on EBSCO, GoogleScholar, PubMed, and ResearchGate to 
identify potential literature. The following keywords were 
initially used across the aforementioned databases: “neuro-
muscular electrical stimulation” OR “NMES” OR “electri-
cal stimulation” AND “resistance training” OR “strength 
training” OR “weight training” AND “muscular strength” 
OR “strength” AND “muscle mass” OR “mass” OR “body 
composition.” References of selected studies were also 
reviewed to identify additional studies that could be included 
that were not found with the search terms. The search was 
not restricted to any geographical location or sex but was 
restricted to those without any neurological or muscular 
impairments, studies published in English or with an English 
translation available, and studies conducted in humans. The 
electronic search was performed without a date limitation.

Study selection

In accordance with AMSTAR 2 recommendations (Shea 
et al. 2017), two researchers (G.N. and J.A.) independently 
located and reviewed the title and abstract of the prospective 

articles to confirm that the following inclusion criteria were 
met for the systematic review: (1) studies contain both RT 
and a superimposed group, (2) NMES was administered over 
the skin, (3) muscle strength, muscle mass and/or body com-
position were evaluated as an outcome, (4) there were no 
neurological or muscular impairments in the participants, 
(5) original data was reported in the studies, (6) studies 
were conducted in humans, (7) studies were randomized 
controlled trials and (8) studies were published in English 
or had an English translation available. Studies that met the 
inclusion criteria for the systematic review were considered 
for inclusion in the meta-analysis if they met the following 
additional criteria: articles clearly presented the pre- and 
post-intervention data with the mean and standard deviation 
or standard error of mean values. All reviewers reviewed the 
selected articles for any discrepancies in inclusion criteria 
and after articles were identified based on the initial inclu-
sion criteria, a full-text review of all articles was performed 
preceding data extraction.

Data collection and extraction

Authors independently extracted relevant data which 
included the following: (1) author name, (2) age of partici-
pants, (3) description of the study population, (4) sex distri-
bution, (5) study duration, (6) days of training performed per 
week, (7) NMES protocol, (8) RT protocol, and (9) methods 
used to assess muscle strength and muscle mass. The meta-
analysis was limited to analyzing the effects of superimpos-
ing NMES onto RT for muscle strength and muscle mass 
using longitudinal studies that met the inclusion criteria 
(n = 13).

Risk of bias and quality assessment

Reviewers independently assessed the risk of bias for the 
studies included in the meta-analysis using Cochrane Col-
laboration’s Risk of Bias Tool (RoB2) (Higgins et al. 2022). 
Studies were assessed for the following criteria: (1) random 
sequence generation, (2) allocation concealment, (3) blind-
ing participants, (4) blinding of outcome assessment, (5) 
incomplete data reporting, and (6) selective reporting.

Statistical analyses

The meta-analyses were performed to determine the effect of 
superimposing NMES on RT-induced muscular contractions 
on muscle strength and muscle mass, the primary outcome 
measures of this study. Continuous outcomes were reported 
as the mean difference (MD) and standardized mean dif-
ference (SMD) from pre- to post-intervention with a 95% 
confidence interval (95% CI). Random effects meta-analy-
sis models were used to analyze data in R (version 4.2.2). 
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Statistical heterogeneity among studies was assessed using I2 
Statistics. I2 values of 25–50% were considered indicative of 
low heterogeneity, 50–75% were considered moderate het-
erogeneity, and values above 75% were considered to have a 
high degree of heterogeneity (Deeks et al. 2019). Sensitivity 
analyses were performed using a Q test for moderators in 
the random effect meta-analysis model to determine if the 
various parameters of the resistance training and/or NMES 
protocols were associated with the muscular strength and 
muscle mass outcomes. A p-value of < 0.05 was considered 
statistically significant for all statistical tests.

Results

Compliance with Ethical standards

Given this article was a review of published studies, ethical 
approval was not required.

Study selection

The PRISMA flow diagram provides details of the database 
search results along with the exclusion reasoning (Fig. 1) Of 
the 87 studies that were originally identified as meeting the 
inclusion criteria, three studies were excluded due to either 
being a duplicate or a response to an article without origi-
nal research. Of the remaining 84 studies, 69 were removed 
after a full-text assessment as those studies compared NMES 

Fig. 1  Flow diagram of the 
search strategy
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and RT without having a superimposed group, not including 
RT, or not including NMES. The remaining 15 studies met 
the inclusion criteria for systematic review, while two were 
excluded from the meta-analysis due to not stating both the 
mean and standard deviation or standard error of mean for 
pre- and post-intervention measurements, leading to 13 stud-
ies being included in the meta-analysis.

Population characteristics

Population characteristics of the reviewed studies are 
detailed in Table 1. The 15 studies in this systematic review 
were conducted in healthy adults (n = 12), teenagers (n = 1), 
and elderly (n = 2). In terms of physical activity, the stud-
ies included sedentary (n = 5), active (n = 9), and one study 
did not provide information on physical activity levels. Data 
from these studies consisted of 488 total participants (age 
ranging from 16 to 84) with sample sizes varying from 15 
to 89. Among the included studies, seven studies had both 
male and female study participants, four studies reported 
only male participants, three studies reported only female 
participants, and one study did not specify the sex of their 
participants (Evangelista et al. 2019). The thirteen ran-
domized controlled trials included in the meta-analysis 
consisted of 374 healthy participants with 198 being male 
and 121 being female and sample sizes varying from 10 to 
48. Of the participants in the meta-analysis, 172 were allo-
cated to the superimposed NMES and RT group and 165 
were allocated to the RT group with one study not describ-
ing the distribution of study participants (Abulhasan et al. 
2016). Some studies also included an inactive control and/
or NMES-only group; however, these groups were excluded 
from the analyses.

Study designs and primary outcome measurement 
methods

Study characteristics and training protocols are summarized 
in Table 1. Studies reported one or more measurements of 
muscular strength (n = 14) included one repetition max 
(Evangelista et al. 2019; Abulhasan et al. 2016), isokinetic 
dynamometer (Burkett et al. 1998; Da Silva et al. 2018; Iwa-
saki et al. 2006; Park et al. 2016, 2021), hand dynamometer 
(Jang and Park 2021; Benavent-Caballer et al. 2014), force 
transducer (Ludwig et al. 2020), load cell (Herrero et al. 
2010) and maximum voluntary contraction (Dormann et al. 
2019; Micke et al. 2018; Wirtz et al. 2016). Studies reported 
one or more measures of muscle mass (n = 7), included mus-
cle thickness determined by ultrasound (Micke et al. 2018; 
Abulhasan et al. 2016; Da Silva et al. 2018; Matos et al. 
2022; Benavent-Caballer et al. 2014), skeletal muscle mass 
determined by bioelectrical impedance analysis (Jang and 
Park 2021; Park et al. 2021), magnetic resonance imaging 

(Park et al. 2021) and circumference measurements per-
formed with a tape measure (Park et al. 2021; Jang and Park 
2021). Of the thirteen studies included in the meta-analy-
sis, 12 studies reported pre- and post-intervention muscle 
strength (Benavent-Caballer et al. 2014; Dormann et al. 
2019; Evangelista et al. 2019; Da Silva et al. 2018; Herrero 
et al. 2010; Iwasaki et al. 2006; Jang and Park 2021; Ludwig 
et al. 2020; Micke et al. 2018; Park et al. 2016, 2021; Wirtz 
et al. 2016) and 6 studies reported pre- and post-intervention 
muscle mass (Evangelista et al. 2019; Park et al. 2021; Da 
Silva et al. 2018; Benavent-Caballer et al. 2014; Jang and 
Park 2021; Matos et al. 2022).

Overview of the neuromuscular electrical 
stimulation protocols

NMES protocols of the included studies are outlined in 
Table 1 including intervention duration, number of ses-
sions, time per training session, frequency, pulse width, and 
intensity. NMES frequencies of less than 50 Hz are consid-
ered low frequency (Hultman and Spriet 1986; Jabbour et al. 
2015; Hamada et al. 2003), while frequencies of 50 Hz or 
greater are considered high frequency (Bergstrom and Hult-
man 1988; Erickson et al. 2017; Johnson et al. 2003; Laufer 
and Elboim 2008). Along with the protocols, studies that 
used low (Iwasaki et al. 2006; Jang and Park 2021) and high 
frequencies (Evangelista et al. 2019; Wirtz et al. 2016; Park 
et al. 2021, 2016; Dormann et al. 2019; Ludwig et al. 2020; 
Micke et al. 2018; Da Silva et al. 2018; Herrero et al. 2010; 
Benavent-Caballer et al. 2014; Abulhasan et al. 2016) were 
also identified. Two studies did not provide details on NMES 
protocol (Burkett et al. 1998; Matos et al. 2022). Pulse width 
was consistent with available protocols ranging from 300 
to 400 µs. While most studies used the NMES intensity at 
participant’s maximum tolerable level (n = 8) (Abulhasan 
et al. 2016; Wirtz et al. 2016; Dormann et al. 2019; Park 
et al. 2016; Micke et al. 2018; Da Silva et al. 2018; Herrero 
et al. 2010; Benavent-Caballer et al. 2014), two protocols 
used ratings of perceived exertion (RPE) (Evangelista et al. 
2019; Ludwig et al. 2020), one study provided a numeri-
cal value for intensity in milliamps (Jang and Park 2021), 
one reported intensity in volts (Iwasaki et al. 2006), and 
four studies did not provide information on NMES intensity 
(Burkett et al. 1998; Park et al. 2021; Matos et al. 2022; Jang 
and Park 2021). Most study intervention lengths ranged from 
4 to 12 weeks (Evangelista et al. 2019; Burkett et al. 1998; 
Iwasaki et al. 2006; Wirtz et al. 2016; Park et al. 2021; Dor-
mann et al. 2019; Ludwig et al. 2020; Da Silva et al. 2018; 
Herrero et al. 2010; Benavent-Caballer et al. 2014; Matos 
et al. 2022; Jang and Park 2021) while two studies reported 
2 weeks intervention length (Abulhasan et al. 2016; Park 
et al. 2016) and one study conducted an intervention for 
16 weeks (Benavent-Caballer et al. 2014).
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Overview of the resistance training protocols

Resistance training protocols are also outlined in Table 1 
including the number of sets, repetitions per set, intensity, 
rest between each set, intervention duration, and number of 
training sessions. The number of sets and repetitions were 
generally consistent among studies. Most studies utilized 
three sets per exercise (Evangelista et al. 2019; Burkett et al. 
1998; Wirtz et al. 2016; Dormann et al. 2019; Micke et al. 
2018; Benavent-Caballer et al. 2014; Matos et al. 2022) 
while two studies used as low as one set (Park et al. 2021; 
Ludwig et al. 2020) and one study used as many as ten sets 
(Iwasaki et al. 2006). Most studies used repetitions per set in 
the 8–12 range which is commonly recommended for gen-
eral strength training (ACSM 2021), while two studies used 
sets of 15 repetitions (Ludwig et al. 2020; Benavent-Caballer 
et al. 2014) and one study used as high as 20 repetitions 
per set (Park et al. 2021). Like the NMES protocols, the 
intensity of resistance training was inconsistent among the 
included studies. While many studies utilized values based 
on a percentage of 1 repetition max (Abulhasan et al. 2016; 
Iwasaki et al. 2006; Da Silva et al. 2018; Benavent-Caballer 
et al. 2014), other studies also used RPE (Dormann et al. 
2019; Micke et al. 2018), repetition maximum (Evange-
lista et al. 2019; Burkett et al. 1998), and 10 repetition max 
(Wirtz et al. 2016; Matos et al. 2022). Several studies did 
not report on resistance training intensity (Park et al. 2021, 
2016; Ludwig et al. 2020; Jang and Park 2021). While half 
of the studies either did not report or did not control for 
repetition tempo, eight studies did include tempo in their 
protocols (Wirtz et al. 2016; Dormann et al. 2019; Park et al. 
2016; Ludwig et al. 2020; Micke et al. 2018; Da Silva et al. 
2018; Herrero et al. 2010; Benavent-Caballer et al. 2014).

Overview of the superimposed NMES protocol 
with resistance training

Specific protocols for using NMES with RT are outlined 
in Table 1. Of the fifteen included studies, ten studies had 
NMES synchronized with the RT (Burkett et al. 1998; Wirtz 
et al. 2016; Dormann et al. 2019; Park et al. 2016, 2021; 
Ludwig et al. 2020; Micke et al. 2018; Da Silva et al. 2018; 
Herrero et al. 2010; Benavent-Caballer et al. 2014), one 
study used a synchronized protocol but in the antagonist 
muscle instead of the agonist muscle (i.e. hamstring stimula-
tion during knee extension and quadricep stimulation dur-
ing knee flexion) (Iwasaki et al. 2006), one study used a 
synchronized protocol with synchronization only during the 
eccentric phase of each repetition (Matos et al. 2022), and 
three studies had the NMES running continuously during 
training (Abulhasan et al. 2016; Evangelista et al. 2019; Jang 
and Park 2021).* 
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Risk of bias

Assessment of quality and risk of bias are displayed in 
Fig. 2. Using the Cochrane Collaborations’ Risk of Bias 
(RoB) tool (Higgins et al. 2022) 13.3% of studies presented 
with low risk, 66.7% moderate risk, and 20% high risk with 
an overall rating of moderate to low risk. A substantial por-
tion of the risk is due to many studies not blinding the partic-
ipants or persons delivering the intervention to which group 
the participants were allocated, along with not calculatlying 
sample size leading to many studies having a moderate risk 
of bias in deviation from the intended intervention. However, 
in the case of NMES, it is near impossible to blind partici-
pants as to which method of stimulation they are receiving as 
it will be noticed and result in blinding failure. Three studies 
were classified as high risk due to lack of randomization of 
study participants, in one study due to logistical concerns 
as they were teenagers who took public transportation and 
needed to be scheduled into similar time blocks and had 
unequal sample sizes between groups (Ludwig et al. 2020), 
with the remaining two having measurement of outcome 
bias as they trained the lower body but reported strength of 
the upper body using a handheld grip strength dynamometer 
(Benavent-Caballer et al. 2014; Jang and Park 2021).

Outcome of the included studies

The effect of superimposed NMES on RT‑induced muscular 
strength

A summary of the extracted data for muscle strength is 
shown in Fig. 3. The meta-analysis for muscle strength 
is based on standardized mean difference (SMD) from 
12 studies with a pooled standard deviation used in 

the analysis. Each study compared the improvement in 
strength in NMES + RT and conventional RT groups. The 
SMD across all studies was 0.31 (95% CI 0.13, 0.49) with 
a p-value of 0.02 and an I2 heterogeneity value of 73.05%. 
This was substantiated by the systematic review with four 
of the studies finding significant differences in favor of 
the superimposed group (Evangelista et al. 2019; Ludwig 
et al. 2020; Micke et al. 2018; Herrero et al. 2010) and 
one additional study demonstrating that while there was 
no significant difference, a medium effect size in favor of 
superimposed training was found (Park et al. 2016).

The effect of superimposed NMES on RT training induced 
muscle mass

Among the studies included in the systematic review and 
meta-analysis, 6 studies investigated the effect of superim-
posing NMES on RT regarding muscle mass. A summary 
of the extracted data for muscle mass is depicted in Fig. 4. 
The meta-analysis for muscle mass is based on the SMD 
from 6 studies with a pooled standard deviation used in 
the analysis. Each study compared muscle mass increases 
in NMES + RT and resistance training groups. The SMD 
of the 6 studies was 0.26 (95% CI 0.03, 0.49) with a 
p-value of 0.02 and an I2 heterogeneity value of 21.45%. 
The meta-analysis on muscle mass was also substantiated 
by the systematic review with two studies demonstrating 
a significant difference favoring the superimposed group 
(Evangelista et al. 2019; Benavent-Caballer et al. 2014). 
Additionally, to determine if there were any influencing 
factors from either the RT or the NMES protocols on mus-
cle strength and muscle mass, a sensitivity analysis was 
performed.

Fig. 2  Risk of bias for studies included in the meta-analyses
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Sensitivity analysis of the effect of superimposed NMES 
on RT‑induced muscular strength

There are many variables that were seen to influence the 
gain in muscular strength. For the RT variables, number of 
sets (p = 0.02) and repetitions per set (p = 0.01) were found 
to be associated with the increase in muscular strength. 
For NMES, the frequency (p < 0.01) was associated with 
increased muscular strength. For the overall training proto-
col, sessions per week (p < 0.01), total number of sessions 
(p = 0.03), and time of training per week (p = 0.03) were 
positively associated with muscular strength. Other factors 
measured but did not have an influence on muscular strength 
include NMES pulse width (p = 0.40), time per session 
(p = 0.20), and intervention duration (0.10).

Sensitivity analysis of the effect of superimposed NMES 
on RT training‑induced muscle mass

The above-mentioned variables were also assessed to deter-
mine if there were influences on the increase in muscle mass. 

None of the variable were found to have an association with 
increases in muscle mass (p > 0.05).

Discussion

The purpose of this systematic review and meta-analysis 
was to determine the effect of superimposing NMES on RT-
induced adaptations in muscle strength and muscle mass. 
Based on the meta-analysis performed, we conclude that 
superimposing NMES on RT results in greater increases in 
both muscle strength and muscle mass compared to con-
ventional RT.

RT has long been recommended for improving muscle 
strength and muscle mass. NMES is commonly used in 
therapeutic and rehabilitative settings to prevent the loss of 
muscle strength and muscle mass during immobilization and 
physical inactivity (Hainaut and Duchateau 1992; Stevens-
Lapsley et al. 2012; Vaz et al. 2013). NMES is also practical 
and convenient to use due to the cost, portability and mini-
mal equipment and effort required to receive the benefits 
associated with it. Unlike RT, the strength gains associated 

Fig. 3  Forest plot depicting the standard mean difference for muscular strength in NMES + RT and RT groups. Studies favoring RT are in the 
negative range and those favoring NMES + RT are in the positive range. Data presented are mean difference ± 95% confidence intervals
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with NMES may be attributed to synchronous motor unit 
depolarization instead of the oscillation of muscle fibers 
seen in voluntary contractions and constant, higher intensity 
firing rates of the motor units leading to more force produc-
tion (Dehail et al. 2008). Previous research has shown that 
use of NMES can prevent the loss of muscle strength in the 
quadriceps for patients recovering from knee arthroplasty 
and offset the detrimental effects of osteoarthritis on quadri-
ceps strength and muscle mass in patients unable to perform 
conventional RT due to pain and joint stiffness (Stevens-
Lapsley et al. 2012; Vaz et al. 2013). Although both NMES 
and RT have been shown to increase muscle strength and 
mass when used alone, whether there is an additive effect of 
NMES being used with RT remained unknown.

This is the first systematic review and meta-analysis 
that has investigated whether the addition of NMES to a 
RT intervention leads to greater gains in muscle strength 
compared to RT performed alone. The results indicate a sig-
nificantly greater increase in muscle strength when NMES 
is superimposed on RT compared to RT performed alone. 
When examining days of training per week and the length 
of intervention, most studies were similar regarding the total 

number of training sessions. However, in the studies favoring 
superimposed training (Evangelista et al. 2019; Park et al. 
2016; Ludwig et al. 2020; Micke et al. 2018; Herrero et al. 
2010), frequencies of the NMES protocols ranged from 85 to 
120 Hz while the studies that reported no greater gain with 
superimposed NMES (Abulhasan et al. 2016; Burkett et al. 
1998; Wirtz et al. 2016; Park et al. 2021; Dormann et al. 
2019; Da Silva et al. 2018; Benavent-Caballer et al. 2014; 
Jang and Park 2021) used NMES frequencies ranging from 
20 to 85 Hz. This was further substantiated by the sensitiv-
ity analysis showing a positive association between NMES 
frequency and increases in muscular strength. Therefore, 
high-frequency NMES may be necessary for greater gains 
in muscle strength with superimposed NMES. This could 
be due to the force-frequency relationship in which increas-
ing frequency is shown to increase force output (Binder-
Macleod et al. 1995; Gregory et al. 2007). One important 
factor to consider is the positioning of the electrodes in rela-
tion to nerve endings. Applying stimulation at the motor 
point of the target muscle will elicit motor branch excitation 
while suboptimal positioning would require higher intensi-
ties while also exciting afferent fibers leading to an increased 

Fig. 4  Forest plot depicting the standard mean difference for muscle mass in NMES + RT and RT groups. Studies favoring RT are in the negative 
range and those favoring NMES + RT are in the positive range. Data presented are mean difference ± 95% confidence intervals
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pain sensation (Gobbo et al. 2014, 2011). Also, the contrac-
tion and rest times of each NMES contraction should be 
noted. Of the studies that included detailed NMES proto-
cols, each contraction lasted a relatively short period of time 
(< 30 s). This is important due to high-frequency fatigue 
associated with NMES (Moritani et al. 1985). When per-
formed for 30 s or longer, NMES causes significant fatigue 
and decreased force output (Moritani et al. 1985). Next, most 
studies favoring superimposed training were conducted in 
active or athletic populations (Evangelista et al. 2019; Lud-
wig et al. 2020; Micke et al. 2018). More physically active 
participants may be better able to tolerate NMES due to 
superior muscular coordination compared to the untrained 
participants leading to the electrical stimulation potentially 
being more effective (Gondin et al. 2011). Among the stud-
ies that did not show a greater gain in muscle strength by 
superimposing NMES, two studies measured strength in dif-
ferent muscle groups than the muscle group trained during 
the intervention (Benavent-Caballer et al. 2014; Jang and 
Park 2021). These studies measured grip strength using a 
handheld dynamometer while training the lower body. It is 
possible that strength measurements focused on the lower 
body may have demonstrated different results due to the 
principle of specificity (ACSM 2021). Taken together, the 
existing evidence suggests that superimposing NMES on RT 
can be beneficial in causing significantly greater increases in 
muscle strength than RT performed alone.

The results of the systematic review and meta-analy-
sis also demonstrate that superimposing NMES on RT 
results in greater increases in muscle mass than RT per-
formed alone. Studies that demonstrated greater increases 
in muscle mass with superimposed NMES (Evangelista 
et al. 2019; Benavent-Caballer et al. 2014) used 8–16 week 
training interventions; whereas the training duration was 
only 2–8 weeks in studies that did not result in greater 
increases in muscle mass with superimposed NMES (Park 
et al. 2021; Da Silva et al. 2018; Matos et al. 2022; Jang 
and Park 2021). Therefore, it may be possible that a mini-
mum of 8 weeks of training duration is necessary to see 
significant improvement in muscle mass between the two 
modes of exercise as is generally expected when train-
ing for muscle hypertrophy (Abe et al. 2000; Damas et al. 
2018). This was substantiated by the sensitivity analyses. 
While intervention duration was not related to increased 
muscle mass or strength (p > 0.05), sessions per week, 
total number of sessions, and time of training per week all 
were (p < 0.05). It is likely that overall volume of exercise 
may be a factor in the greater increases found. It should 
also be noted that no studies controlled the participants’ 
diet. Having a sufficient intake of protein has been shown 
to significantly increase muscle strength, fat-free mass, 
as well as muscle cross-sectional area through increasing 
muscle protein synthesis and inhibiting muscle protein 

breakdown, yielding a net positive muscle protein balance 
(Morton et al. 2018; van Loon and Gibala 2011). Due to 
this lack of control, the role diet could have played in the 
included studies remains unknown.

Limitations

There are limitations to these analyses that must be noted. 
The primary outcome measures reported in each study were 
used and provide the main conclusion of the study results. 
Given some of the studies reported multiple variables that 
are indicative of muscle strength and mass, analyses based 
on only one variable may be considered a limitation of this 
study. While there were significantly greater gains in mus-
cle mass and strength favoring superimposed training, the 
majority of studies examined the lower body musculature via 
either the quadriceps or hamstrings, while only two studies 
examined the upper body with muscles including the back 
extensors (Park et al. 2016) and biceps (Matos et al. 2022). A 
greater amount of muscle groups trained with superimposed 
stimulation are needed to determine the effects on whole-
body muscle mass and strength. Next, the muscle mass 
analysis was limited by a small sample size as only 6 studies 
investigated the effect of superimposed training compared 
to resistance training for muscle mass development. While 
there were significantly greater increases in muscle mass, 
more studies are needed to provide a better understanding on 
the effect of superimposing NMES during resistance training 
for muscle mass. Also, the effectiveness of NMES is related 
to training intensity (Maffiuletti 2010). Given that force 
evoked from NMES was not measured in any of the included 
studies, there is no way of knowing how much force NMES 
was accounting for during the training protocols. Also, most 
studies used NMES in synchronization with sets of exercise. 
However, some NMES protocols were continuous in which 
NMES would be administered at the given contraction/rest 
time regardless of it came on during a set or during the rest 
period between sets. Of the studies using continuous NMES, 
there were conflicting results with 1 study finding significant 
differences favoring superimposed training while the others 
did not. The mode of superimposing NMES may have also 
been a factor in the overall results and should be considered.

In conclusion, the effects of superimposed training com-
pared to conventional resistance training indicate greater 
gains in muscle mass and strength following at least eight 
weeks of high-frequency electrical stimulation (≥ 85 Hz). 
If one is looking to maximize the effectiveness of a resist-
ance training protocol, using NMES simultaneously during 
training sessions leads to better gains. Whether there are 
additional benefits for other factors such as glycemic control 
remains unknown and requires further study.
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