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Abstract 61 
High-load resistance exercise (>60% of 1-repetition maximum) is a well-known stimulus to enhance 62 

skeletal muscle hypertrophy with chronic training. However, studies have intriguingly shown that low-load 63 
resistance exercise training (RET) (≤60% of 1-repetition maximum) can lead to similar increases in skeletal muscle 64 
hypertrophy as compared to high-load RET. This has raised questions about the underlying mechanisms for eliciting 65 
the hypertrophic response with low-load RET. A key characteristic of low-load RET is performing resistance 66 
exercise to, or close to, task failure, thereby inducing muscle fatigue. The primary aim of this evidence-based 67 
narrative review is to explore whether muscle fatigue may act as an indirect or direct mechanism contributing to 68 
skeletal muscle hypertrophy during low-load RET. It has been proposed that muscle fatigue could indirectly 69 
stimulate muscle hypertrophy through increased muscle fibre recruitment, mechanical tension, ultrastructural muscle 70 
damage, the secretion of anabolic hormones, and/or alterations in the expression of specific proteins involved in 71 
muscle mass regulation (e.g., myostatin). Alternatively, it has been proposed that fatigue could directly stimulate 72 
muscle hypertrophy through the accumulation of metabolic by-products (e.g., lactate), and/or inflammation and 73 
oxidative stress. This review summarizes the existing literature eluding to the role of muscle fatigue as a stimulus for 74 
low-load RET-induced muscle hypertrophy and provides suggested avenues for future research to elucidate how 75 
muscle fatigue could mediate skeletal muscle hypertrophy. 76 
 77 

Introduction 78 
The current American College of Sports Medicine position statement for resistance exercise recommends 79 

that individuals train using at least 70% of their one repetition maximum (1-RM) for 8-12 repetitions per set for 1-3 80 
sets to maximize resistance exercise-induced adaptations such as muscle hypertrophy and strength (1). These 81 
guidelines are based on the notion that hypertrophic adaptations are maximized by activating higher threshold motor 82 
units at ≥ 70% 1-RM (2), consistent with the load-dependent Henneman size principle of motor unit recruitment (3). 83 
These recommendations are based on training with high loads (>60% of 1-RM). However, similar muscle 84 
hypertrophic adaptations have been reported in response to high- and low-load (≤60% of 1-RM) resistance exercise 85 
training (RET) when muscle contractions are performed to task failure (i.e. to volitional fatigue) (4–7). Low-load 86 
RET may be a beneficial exercise modality for encouraging adherence to a RET program (8), as it can stimulate 87 
muscle hypertrophy similar to high-load RET (9, 10) while reducing joint reactive forces compared to higher-load 88 
training (8). Understanding the mechanisms underpinning muscle hypertrophy in response to both high-load and 89 
low-load RET is crucial from a practical perspective, as these interventions elicit comparable hypertrophic 90 
outcomes. However, the upstream stimuli and underlying downstream molecular cell signalling mechanisms 91 
involved in the hypertrophic response may exhibit similarities and differences between high-load and low-load RET. 92 
Muscle hypertrophy is primarily defined by an increase in skeletal muscle cross-sectional area (CSA), 93 
predominantly driven by the expansion of contractile elements (11). This hypertrophic process requires the 94 
stimulation of muscle protein synthesis (MPS) rates, which must exceed the rate of muscle protein breakdown to 95 
facilitate a positive net protein balance and subsequent protein accretion in muscle tissue (12). The regulation of 96 
MPS is multifaceted, involving both mechanistic target of rapamycin complex 1 (mTORC1)-dependent and 97 
independent mechanisms (e.g., via the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated 98 
kinase 1/2 (ERK1/2) pathway). These pathways are thought to be critical for promoting exercise-induced anabolism 99 
and the expansion of contractile elements (11, 13–18). Although not discussed in depth in the present review, 100 
muscle satellite cells and myonuclear accretion may also contribute to RET-mediated muscle hypertrophy (19–22). 101 
Additionally, ribosome biogenesis plays a key role in skeletal muscle hypertrophy, as the rate of protein synthesis 102 
within a myocyte is partly determined by translational capacity, which is limited by the number of ribosomes (23). 103 
However, this topic is beyond the scope of this review. Readers are referred to several detailed review papers for a 104 
comprehensive overview of these hypertrophic mechanisms (21, 22, 24).  105 

During RET with relatively high loads, the majority of muscle fibres are recruited immediately, including 106 
high-threshold motor units that innervate type II fibres, which are recognized for their enhanced hypertrophic 107 
potential (25, 26). In contrast, low-load RET likely involves a delayed recruitment of high-threshold motor units, 108 
with muscle fatigue, with repeated contractions, these higher-threshold motor units are recruited to sustain force 109 
output (5, 27). Therefore, training to task failure during low-load RET may enable the activation of these muscle 110 
fibres independently of the load (28), while higher loads may facilitate greater motor unit recruitment even before 111 
reaching the point of task failure (29). For example, terminating high-load RET prior to failure yields similar 112 
increases in muscle mass over eight weeks compared to high-load RET performed to task failure (30, 35). 113 
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Nonetheless, both high and low loads can induce fatigue. Muscle hypertrophy can also occur with sets terminated 114 
before task failure (5-8 repetitions in reserve), regardless of the training load (31). Still, hypertrophy is generally 115 
more pronounced when sets are performed closer to task failure (31). Thus, proximity to task failure appears 116 
necessary for maximizing muscle hypertrophy with low-load RET (7, 32–36), whereas training to failure may not be 117 
as essential with high-load RET (37–39). Consequently, training to or near task failure, particularly with lower 118 
training loads, may be critical for optimizing skeletal muscle hypertrophy. This suggests that RET-induced fatigue 119 
might significantly stimulate muscle hypertrophy, highlighting the importance of fatigue in low-load RET.  120 

Muscle fatigue is often defined by an exercise-induced decline in muscle contractile performance (i.e., 121 
decreased force or power) (40) and is commonly attributed to metabolic perturbations. Broadly, fatiguing exercise 122 
can induce the accumulation of metabolites (e.g., inorganic phosphate, H+, lactate) and result in energy substrate 123 
depletion (e.g., glycogen), impairing the volitional drive to skeletal muscle and/or decrease intrinsic muscle force 124 
generation capacity (40–46). However, fatigue during low-load RET may not primarily result from the classic 125 
mechanisms of fatigue (e.g., metabolite accumulation or substrate depletion), yet it can still effectively stimulate 126 
skeletal muscle hypertrophy. We, therefore, propose that fatigue could act ‘directly’ and/or ‘indirectly’ through 127 
various mechanisms to stimulate skeletal muscle hypertrophy, which we describe below. Fatigue may function as a 128 
‘direct stimulus’ for muscle hypertrophy by inducing various physiological changes within the muscle (e.g., 129 
increased metabolite accumulation and inflammation), with those stimulating a hypertrophic response. For example, 130 
fatigue could directly influence the mechanisms of skeletal muscle growth through the accumulation of specific 131 
metabolites (e.g., lactate), localized oxidative stress and inflammation (32, 47). Conversely, we propose that fatigue 132 
might be an ‘indirect stimulus’ through secondary mechanisms, such as enhanced fibre recruitment and mechanical 133 
tension applied to these newly recruited fibres. These mechanisms are activated in response to repeated contractions 134 
that lead to fatigue-induced reductions in contractile force output. We propose that mechanical tension and muscle 135 
damage may act as indirect mechanisms for inducing muscle hypertrophy, particularly in response to fatigue-136 
inducing RET. Initially, mechanical tension activates a subset of muscle fibres. As these fibres become fatigued, 137 
additional fibres are recruited to sustain the required force (3). This progressive recruitment and the associated 138 
mechanical tension and muscle damage contribute to the overall hypertrophic response (3, 5, 27). Increased 139 
recruitment of muscle fibres during fatiguing contractions at low loads (48) could also be enhanced by metabolic 140 
stress (i.e., low intracellular energy/accumulation of metabolites), initiating an indirect signalling cascade to activate 141 
anabolic processes in muscle (49). Hormones with anabolic properties [e.g., testosterone, growth hormone (GH), 142 
insulin-like growth factor 1 (IGF-1)] have also been suggested to impact the hypertrophic response to RET, as 143 
fatigue-related factors (e.g. inorganic phosphate, H+, glycogen depletion) have been previously proposed to 144 
indirectly stimulate their production through various mechanisms (e.g. lactate, muscle damage, reactive nitrogen 145 
species) (50, 51).  146 

Despite the differences among the proposed upstream mechanisms of low-load induced skeletal muscle 147 
hypertrophy (Figure. 1), performing low-load RET to task failure due to muscle fatigue appears necessary to 148 
stimulate maximal hypertrophic adaptations (7, 32–35). While RET is the most effective exercise modality to induce 149 
skeletal muscle hypertrophy, other types of exercise (e.g., high-intensity interval training) are also associated with 150 
increases in whole muscle CSA/volume, as previously reviewed (52). However, it should be noted that not all forms 151 
of fatigue-inducing exercise lead to muscle hypertrophy, and some types of prolonged endurance exercise may 152 
attenuate the hypertrophic response of skeletal muscle to RET (53–56). Thus, with sufficient load, fatigue-inducing 153 
RET likely induces divergent downstream cellular signalling compared to fatigue-inducing endurance exercise. This 154 
review will explore the potential of RET-induced fatigue to act as an indirect and/or direct stimulus to elicit skeletal 155 
muscle hypertrophy during low-load RET. Avenues for future research to elucidate how fatigue could mediate 156 
skeletal muscle hypertrophy will also be discussed. 157 

 158 

Potential Indirect Mechanisms of Fatigue Induced Skeletal Muscle Hypertrophy 159 
Low-load fatigue-induced hypertrophy is proposed to be mediated by several indirect mechanisms. 160 

Specifically, mechanisms associated with fatigue (e.g. increased metabolite concentration, substrate depletion) (40–161 
43, 45, 46) may have secondary effects, which could increase skeletal muscle hypertrophy. These include increased 162 
recruitment of type II muscle fibres during exercise to task failure (34, 48, 49, 57), mechanical tension signalling 163 
mechanosensors (11, 58), muscle damage stimulating MPS rates to facilitate tissue repair/remodelling (59), 164 
increasing the concentration of circulating anabolic hormones (60–62) and modifying gene expression and content 165 
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of proteins implicated in the regulation of muscle mass (i.e., myostatin) (63). The notion that high and low loads can 166 
result in similar hypertrophy when performed to task failure is grounded in the theory that, regardless of the load, the 167 
entire spectrum of available motor units will eventually be recruited. Full motor unit recruitment occurs in part 168 
because, as contractions become fatiguing, the brain must activate higher-threshold motor units to maintain the 169 
necessary force (2, 64). Furthermore, it has been proposed that an acute increase in systemic and localized hormone 170 
concentrations, such as testosterone and GH, can influence the muscle anabolic response, which may be indirectly 171 
stimulated through fatiguing contractions (60, 61). However, this hypothesis is frequently contested (65–67). The 172 
proposed effects of exercise load and volume on fibre recruitment, muscle damage, and fatigue are outlined in 173 
Figure 2. This section will explore indirect mechanisms potentially linked to fatigue-induced muscle hypertrophy, 174 
including 1) fibre recruitment, 2) mechanical tension, 3) exercise-induced muscle damage, 4) hormonal changes, and 175 
5) alterations in the expression of specific proteins involved in muscle mass regulation. 176 

 177 
1. Fibre Recruitment 178 

High and low training loads are generally accepted to promote whole muscle hypertrophy by increasing 179 
muscle fibre CSA. One of the most widely accepted hypotheses linking fatigue to muscle hypertrophy during low-180 
load RET involves the additional recruitment of type II muscle fibres when exercise is performed to task failure (48, 181 
49, 57, 68). Regardless of load or time under tension, performing resistance exercises to task failure is proposed to 182 
activate both type I and type II muscle fibres maximally (28). As a result, MPS rates and muscle hypertrophy are 183 
expected to be more pronounced in recruited fibres. Previous research on muscle activation and hypertrophy in the 184 
triceps-brachii demonstrated that increases in CSA over 12 weeks of RET were strongly correlated with and induced 185 
by the regions most activated during an acute bout of exercise (69, 70). Therefore, muscle activation, and by 186 
extension, fibre recruitment, is a key mechanism driving muscle hypertrophy in response to RET. 187 
 188 
1.1 Metabolic Stress and Blood Flow Restriction 189 

During exercise, the increased ADP/ATP ratio and the resulting accumulation of various metabolites are 190 
termed ‘metabolic stress.’ Metabolic stress has previously been proposed as a potential mechanism to induce muscle 191 
hypertrophy in response to RET (discussed in later sections) (71, 72). The higher within-set repetitions and greater 192 
time under tension with low-load RET results in greater metabolic stress (73), leading to additional fibre recruitment 193 
with the onset of muscle fatigue. Therefore, this increased fibre recruitment may ultimately contribute to increased 194 
skeletal muscle hypertrophy. Multiple studies have demonstrated that recruitment thresholds diminish as fatigue 195 
accumulates during sustained submaximal exercise (74–76). Consequently, more muscle fibres are recruited as 196 
fatigue sets in. 197 

One method to investigate the role of metabolic stress is through blood flow restriction (BFR). When BFR 198 
is combined with RET, MPS is acutely stimulated (77, 78) , and muscle hypertrophy is promoted (62, 79–81), which 199 
has been proposed to be due to metabolite accumulation (33) and muscle cell swelling (discussed in subsequent 200 
sections) (82, 83) enhancing fatigue and, therefore, muscle fibre recruitment. However, MPS is not stimulated when 201 
BFR is applied without RET (84), and BFR alone is inadequate to mitigate muscle loss during bed rest (85). The 202 
recruitment and hypertrophy of type II fibres in response to BFR-RET may be attributed to changes in the 203 
intramuscular environment (86). Metabolic stress and the accumulation of metabolites such as hydrogen ions (H+), 204 
lactate, and inorganic phosphate (discussed in subsequent sections) can accelerate the onset of fatigue during 205 
exercise (40, 46, 87), leading to a reduced time under tension and fewer repetitions to task failure (5, 87, 88), 206 
consequently limiting training volume. Another hypothesis for BFR-RET-induced hypertrophy is that acute 207 
elevations in systemic anabolic hormones (discussed in later sections) may contribute to the stimulation of MPS (60, 208 
89). Overall, studies utilizing BFR-RET suggest that increased recruitment of type II fibres, driven by increased 209 
metabolic stress, likely plays a key role in promoting muscle hypertrophy as exercise-induced fatigue progresses.  210 
 211 
1.2 Fibre-Specific Recruitment and Hypertrophy 212 

Type II fibres exhibit a greater hypertrophic capacity compared to type I fibres (25, 26, 90). This 213 
heightened hypertrophic potential is often attributed to the fact that fibre-type-specific hypertrophy is predominantly 214 
observed following high-load RET (91). High loads preferentially activate higher-threshold motor units (2), a 215 
phenomenon corroborated by the greater surface electromyography (EMG) amplitudes observed during high-load 216 
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versus low-load RET (92, 93). To effectively recruit these higher-threshold motor units, low-load RET must be 217 
performed to task failure, thereby increasing time under tension (2, 94) and ensuring full recruitment of type II 218 
muscle fibres (28). These factors are essential for achieving skeletal muscle hypertrophy (95).  219 

When low-load RET is not performed to task failure, high-load RET proves to be a superior hypertrophic 220 
stimulus (35), resulting in greater growth of both type I and type II muscle fibres (2, 96) and more significant 221 
increases in strength than low-load RET (2, 10, 97). These greater strength adaptations may be attributed to 222 
enhanced neural mechanisms, such as improved motor unit activation and reduced antagonistic activation, 223 
independent of fibre-specific hypertrophy (10, 98, 99). High-load RET has been shown to produce more substantial 224 
neural adaptations, including increases in maximal voluntary isometric contraction force, voluntary activation, and 225 
EMG amplitude, compared to low-load RET (100, 101).  226 

When low-load RET is performed to task failure, previous findings generally suggest greater hypertrophy 227 
in type I muscle fibres compared to high-load RET (2, 96, 97). However, not all research supports this distinction 228 
(102). A systematic review concluded that low-load BFR-RET may result in similar or even greater hypertrophy of 229 
type I fibres compared to type II fibres, potentially due to increased metabolic stress or inflammation (94). The 230 
authors, however, did not propose a specific mechanism for this observation, describing it as “preliminary evidence” 231 
and emphasizing the need for further research (94). Other studies suggest that similar hypertrophy can be achieved 232 
with low and high loads in muscles such as the soleus (type I dominant) and the gastrocnemius (mixed fibre type) 233 
muscles (103). It is also common to observe a decrease in the percentage of type IIX fibres following RET (97, 104, 234 
105). Therefore, while fibre-specific hypertrophy remains a contentious topic, the hypothesis that low-load RET 235 
performed to task failure may result in greater type I muscle fibre hypertrophy than high-load RET is intriguing and 236 
warrants further investigation.  237 
 238 
1.3. Increased Intracellular Calcium 239 
 Intracellular calcium (Ca2+) is a key mediator that can convert mechanical load into an intracellular 240 
signalling pathway (106). Additionally, fibre recruitment activates excitation-contraction coupling processes to 241 
enable force generation, with increased myoplasmic free [Ca2+] ([Ca2+]i) being a major regulator of crossbridge force 242 
generation. One hypothesis suggests that increased [Ca2+]i, resulting from the recruitment of muscle fibres and 243 
elevated motor unit discharge rates during fatiguing exercise, activates calmodulin, which in turn activates 244 
calcineurin and increases MPS rates (107), thereby stimulating muscle fibre hypertrophy (107). In mice, the muscle-245 
specific deletion of sarcolipin, a sarcoplasmic reticulum calcium ATPase (SERCA) pump inhibitor, reduces 246 
calcineurin activation and induces muscle atrophy by accelerating Ca2+ removal from the myoplasm (108). Another 247 
hypothesis proposes that increased [Ca2+]i induces Ca2+ entry into the inner mitochondrial membrane via a dedicated 248 
Ca2+ channel, the mitochondrial Ca2+ uniporter (MCU) (109). This Ca2+ entry activates the insulin growth factor-249 
1/Akt pathway and the transcription of the proliferator-activated receptor gamma coactivator 1 alpha 4 gene 250 
(PGC1α4) (109), a potent regulator of muscle hypertrophy (110). However, it remains unknown whether these Ca2+-251 
mediated mechanisms can fully explain hypertrophy in human skeletal muscle and whether they underlie an indirect 252 
pathway by which the activation of muscle fibres during increased fibre recruitment associated with fatiguing low-253 
load RET stimulates muscle hypertrophy. 254 
 255 
2. Mechanical Tension 256 

Mechanical tension is typically recognized as the most robust regulator of MPS rates, demonstrating 257 
increased skeletal muscle hypertrophy and muscle mass when performing high-load RET (11, 111). It is well 258 
established that muscle mass and strength are rapidly lost when mechanical tension is removed from muscles, as 259 
seen during periods of immobilization, bed rest, or exposure to microgravity (112, 113). The mechanisms of 260 
mechanical load-induced skeletal muscle growth have been extensively reviewed (11). The proposed mechanisms 261 
through which mechanical tension induces muscle hypertrophy are primarily through mechanotransduction, but have 262 
also been suggested to include increased anabolic hormone production, muscle damage, ROS production, and 263 
increased recruitment of fast-twitch muscle fibres (11, 47). However, it remains uncertain whether mechanical 264 
tension is the mechanism underlying muscle hypertrophy with low-load RET, as this training imposes less 265 
mechanical tension on the whole muscle. Furthermore, muscle fatigue also decreases the contractile force of already 266 
recruited muscle fibres, decreasing the mechanical tension imposed on those fibres. 267 
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The hypertrophic response to mechanical load involves mechanotransduction, a process where 268 
mechanosensors convert musculoskeletal stress from mechanical loading into chemical signals that activate 269 
intracellular anabolic and catabolic pathways, ultimately leading to the enlargement of myofiber (2, 114). A key 270 
mediator of this load-induced mechanotransduction is focal adhesion kinase (FAK). This non-receptor kinase 271 
transduces skeletal muscle stress into signals transmitted across the cytoplasmic membrane, activating cell growth 272 
pathways (115–117). Focal adhesions are associated with the Hippo pathway effectors Yes-associated protein 1 273 
(Yap1) and its paralogue gene Wwtr1 (Taz). Yap and Taz are mechanosensitive transcriptional cofactors (118) that 274 
respond to various exercise-associated stimuli, including RET (119). These factors regulate muscle differentiation 275 
and satellite cell function (120). Yap activation leads to skeletal muscle hypertrophy (121, 122) and is known to be 276 
associated with mTORC1 activation through downstream signalling processes (123–125).  277 

Dystrophin plays a crucial protein in modulating mechanical tension (126), stabilizing the muscle 278 
membrane during contraction, and helping to prevent contraction-induced muscle damage (127). Additionally, 279 
dystrophin serves as a mediator of cell signalling processes (128). These mechanisms underscore the critical role of 280 
mechanical tension in skeletal muscle growth, as its absence leads to significant atrophy. To our knowledge, no 281 
studies have specifically investigated the activation of FAK or Yap following high- and low-load RET. However, it 282 
is reasonable to hypothesize that mechanotransduction occurs in both scenarios when RET is performed to task 283 
failure, potentially serving as a signal for hypertrophy.  284 

Although high-load exercise is generally associated with increased muscle hypertrophy and strength (2, 285 
129), mechanical tension may not be the primary mechanism for muscle hypertrophy in low-load RET due to the 286 
relatively low tension involved (47). Therefore, rather than mechanical tension alone being the primary driver of 287 
skeletal muscle hypertrophy with low loads, we propose that performing RET to failure allows for an extended time 288 
under tension, facilitating additional muscle fibre recruitment to sustain the force output. This recruitment places 289 
mechanical tension on the newly activated fibres, even though the overall mechanical tension on the entire muscle 290 
remains lower. The mechanical load on these newly activated fibres could stimulate hypertrophy through 291 
mechanotransduction, even with low loads. Consequently, while mechanical tension is an important factor in 292 
skeletal muscle hypertrophy, we propose that mechanical tension and fibre recruitment are closely interconnected 293 
and are necessary to induce hypertrophy with low-load RET. 294 
 295 
3. Exercise-Induced Muscle Damage 296 
 Exercise-induced declines in contractile force, i.e., fatigue, can also be partially explained by mechanical 297 
factors related to exercise-induced muscle damage (EIMD) (130). EIMD can affect specific macromolecules within 298 
the tissue or lead to significant tears in the sarcolemma, basal lamina, and supportive connective tissue, injuring the 299 
contractile elements and the cytoskeleton (131). Research has demonstrated that EIMD promotes MPS (132), 300 
triggers an acute inflammatory response, increases cell swelling, ROS, and satellite cell activity (131), and 301 
stimulates anabolic hormone signalling, potentially enhancing hypertrophy, as previously reviewed (133). Indirect 302 
markers of EIMD, such as elevated blood creatine kinase concentration, suggest that performing RET to task failure 303 
may lead to greater muscle damage compared to non-failure conditions (134). Therefore, EIMD resulting from 304 
fatigue-induced low-load RET could theoretically contribute indirectly to increased muscle hypertrophy. 305 

Indirect markers of muscle damage, including elevated blood creatine kinase and myoglobin 306 
concentrations, reductions in maximal voluntary contraction torque, and increased perceptions of muscle soreness, 307 
suggest that high-load RET induces greater muscle damage than low-load RET (61, 135–137). However, Haun et al. 308 
(2017) found that 48 hours after an exercise bout with high or low loads, some indirect markers of muscle damage, 309 
such as perceptions of muscle soreness and myoglobin concentrations, were similar between groups (138). Other 310 
studies have found that low-load BFR-RET induces muscle damage, as evidenced by elevated creatine kinase 311 
concentration, increased perception of muscle soreness, and decreased force production during maximum voluntary 312 
contractions (139–141), ultimately showing low-load BFR-RET performed to task failure can lead to comparable 313 
muscle damage to high-load RET (142). The topic of BFR-RET-induced EIMD has been discussed in greater detail 314 
elsewhere (143). Although low-load BFR-RET can elicit muscle damage, hypertrophy, and satellite cell 315 
proliferation (142, 144), most studies suggest that high-load RET and low-load RET with BFR induce greater 316 
muscle damage than low-load RET alone across various populations (140, 145). 317 

Despite EIMD being associated with increased MPS rates under various RET modalities (132), the 318 
increased MPS observed in the early stages of resistance exercise appears primarily directed toward tissue 319 
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repair/remodelling subsequent to muscle damage rather than contributing to skeletal muscle hypertrophy (146). 320 
Therefore, while EIMD following a novel bout of RET increases MPS, this increase is unlikely to significantly 321 
contribute to increases in muscle mass, especially in exercise-naïve individuals. That is to say, the acute metabolic 322 
alterations in myofibrillar protein metabolism in the presence of accompanying EIMD are not representative of 323 
chronic skeletal muscle hypertrophic adaptations induced by RET (147). Furthermore, if EIMD does increase MPS, 324 
the extent of EIMD is not likely a major contributor to hypertrophy induced by low-load RET.  325 
 326 
4. Hormones 327 

Resistance exercise has been shown to elicit acute changes in the circulating concentration of various 328 
anabolic hormones (e.g., testosterone, GH, IGF-1) (89). Many of these hormones, particularly testosterone, play a 329 
role in regulating the molecular pathways involved in RET-induced skeletal muscle hypertrophy (148). Specifically, 330 
it has been suggested that the acute post-exercise increase in anabolic hormone concentrations contributes to 331 
exercise-induced muscle hypertrophy (60–62). The acute increase in circulating anabolic hormone concentrations 332 
has been attributed to increases in metabolite concentrations and metabolic stress resulting from fatiguing exercise 333 
rather than solely the mechanical stimulus during RET (60, 61), as well as EIMD (133). However, evidence 334 
indicates that RET involving high muscle tension still elevates the concentrations of circulating anabolic hormones 335 
(50, 149), suggesting that some mechanical tension may be necessary for effective anabolic signalling. Furthermore, 336 
the effects on hormonal responses can vary depending on whether RET is performed closer to, or further from task 337 
failure (134). Performing RET with high volume and effort and activating a substantial amount of total muscle mass 338 
results in elevated circulating concentrations of testosterone, GH (150, 151), and IGF-1 (61). These findings suggest 339 
that RET enhances anabolic hormone concentrations and that training to failure may be crucial for maximizing these 340 
hormonal responses. 341 

Despite the anabolic properties of testosterone and GH on certain tissues, the acute exercise-induced release 342 
of these hormones is unlikely to impact skeletal muscle hypertrophy substantially (151–153). Increases in 343 
endogenous anabolic hormone (i.e., testosterone, GH, and IGF-1) concentrations following RET do not increase 344 
MPS rates or consistently enhance muscle hypertrophy (65–67, 153–155). Furthermore, Morton et al. (2016) 345 
showed no significant differences in anabolic hormone levels between two groups of young men undertaking either 346 
high-load or low-load RET (102). Specifically, after 12 weeks of training, both groups demonstrated comparable 347 
increases in lean body mass and type I and type II fibre CSA, with no significant differences observed between the 348 
training groups (102). Additionally, androgen receptor content appears to be more closely associated with RET-349 
induced skeletal muscle hypertrophy than systemic hormone concentrations (154). Overall, we propose that while 350 
fatigue-inducing exercise can influence endogenous hormone concentrations, these changes are unlikely to play a 351 
major role in driving skeletal muscle hypertrophy in healthy individuals with a normal hormonal milieu.  352 
 353 
5. Specific Proteins 354 

While numerous metabolic enzymes are activated and upregulated following exercise, fatigue has been 355 
linked to specific metabolic enzymes and proteins hypothesized to stimulate hypertrophy. A notable example that 356 
responds directly to acutely and chronically fatiguing exercise is the inhibition of myostatin. Myostatin is a negative 357 
regulator of muscle mass in many mammals, including humans (156, 157), and its gene expression decreases 358 
following resistance exercise (158, 159) both acutely (following a single bout) and chronically (following a training 359 
regimen) (63, 160). Fatigue-inducing exercise could inhibit myostatin, thereby contributing to muscle hypertrophy 360 
through increased activation of mTORC1, the stimulation of MPS rates, and/or the reduction in proteolysis (161, 361 
162). Myostatin is regulated in various ways; one key factor related to RET involves mature myostatin being stored 362 
in a latent complex where it cannot bind to a receptor (163). The activation of this latent myostatin, and thus its 363 
inhibition, is proposed to occur through factors such as low pH, ROS, and proteases (164), making this an indirect 364 
mechanism of low-load induced hypertrophy. However, to our knowledge, these latent myostatin activation 365 
mechanisms have not been evaluated in skeletal muscle post-low-load RET.  366 

Few studies have directly compared myostatin expression following high and low-load RET. One study 367 
reported that myostatin gene expression and its related targets were similar in both high- and low-load RET 368 
conditions (165). Another study demonstrated a more pronounced decrease in myostatin gene expression following 369 
low-load BFR-RET compared to low-load RET without BFR (166). While the pathophysiology of myostatin has 370 
been reviewed previously (157, 163), the mechanism behind the reduction of myostatin in the post-exercise period 371 
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remains unclear. Therefore, low-load BFR-RET may decrease myostatin expression more than high or low-load 372 
RET alone, potentially contributing to greater muscle hypertrophy. However, more research is needed to confirm 373 
this in humans and to explore further the effects following high and low-load RET. 374 
 375 

Potential Direct Mechanisms of Fatigue-Induced Hypertrophy  376 
Fatigue induced by low-load RET may act as a direct mechanism for skeletal muscle hypertrophy through 377 

changes to the myocellular environment (e.g., increased metabolite concentration, inflammation, substrate depletion) 378 
(40–43, 45, 46). An increase in the concentration of local metabolites (e.g., H+, lactate, inorganic phosphate) is 379 
common during RET, which may activate signalling pathways known to stimulate MPS rates and thereby induce 380 
skeletal muscle hypertrophy with chronic RET (48). Systemic or localized changes in inflammation are also 381 
proposed mechanisms that could augment the muscle hypertrophic response (72, 82, 83). In this section, we will 382 
explore the current evidence on 1) metabolites, and 2) cell swelling and inflammation, and how fatigue may directly 383 
stimulate RET-induced muscle hypertrophy via these mechanisms. 384 

 385 
1. Metabolites 386 

While mechanical tension has been suggested as the key to stimulating muscle hypertrophy (48), during 387 
high-repetition sets, various metabolites such as lactate and reactive oxygen and nitrogen species (RONS) can 388 
accumulate in the blood or muscle (167). The accumulation and dysregulation of many metabolites is termed 389 
‘metabolic stress’ (as discussed previously). The build-up of metabolic by-products (e.g. lactate, hydrogen ions, 390 
inorganic phosphate, and others) from anaerobic metabolism during resistance exercise (168, 169) has been 391 
proposed to enhance the anabolic response (26, 48), and these metabolites have been previously suggested as 392 
potential mechanisms underlying metabolite-induced muscle hypertrophy (71, 72).  393 
 394 
1.1 Lactate 395 

Exercise increases blood and plasma lactate concentrations, with low-load RET performed to failure 396 
increasing blood (170) and plasma lactate concentrations (171) more than high-load RET. This may be due to the 397 
increased reliance on anaerobic glycolysis to sustain more prolonged exercise at low loads to task failure. Lactate 398 
does not cause peripheral muscle fatigue (40, 45), but III/IV muscle afferents sense intramuscular lactate to cause 399 
central fatigue (172), which would consequently affect muscle fibre recruitment. Importantly, lactate acts on many 400 
body tissues (e.g., brain, heart, and muscle) and integrates several signalling pathways hypothesized to elicit a 401 
hypertrophic response (173). Previous studies have shown that oral lactate administration in mice increased skeletal 402 
muscle mass and fibre CSA (174, 175). This lactate-dependent hypertrophy is proposed to occur through increased 403 
MyoD expression (176), activation of extracellular signal-regulated kinase 1/2 (ERK1/2) (177), and decreased p38 404 
MAPK (178) signalling.  405 

Despite the greater lactate accumulation with low-load compared to high-load RET (170, 171), and the 406 
possible mechanisms and positive effects of lactate observed in rodents and myotubes, few studies have examined 407 
the effects of lactate on muscle hypertrophy in humans. A recent randomized control trial in human participants 408 
showed that direct exogenous lactate infusion at rest or with exercise did not support the hypothesis that lactate can 409 
alter skeletal muscle anabolic signals via mTOR or ERK signalling (179). While lactate accumulation may elicit 410 
many physiological effects in the body (68, 173), it is unlikely that increased lactate concentrations from low-load 411 
RET alone would provide a sufficient signal for muscle hypertrophy in humans. For a more comprehensive review 412 
of lactate’s role in hypertrophy, the reader is referred to (68). 413 

 414 
1.2 RONS/Oxidative Stress 415 

Strenuous exercise increases the generation of RONS within skeletal muscle, which can contribute to 416 
muscle fatigue by modifying proteins critical for force production (180). However, RONS also serve as essential 417 
signalling molecules, regulating various cellular signalling pathways (181), some of which have been implicated in 418 
RET-induced muscle hypertrophy (182, 183), a subject extensively reviewed in previous literature (184). For 419 
example, nitric oxide has been shown to interact with superoxide to form peroxynitrite, which can activate mTOR 420 
signalling (106, 185). Hydrogen peroxide (H2O2) has been shown to enhance IGF-1 signalling (186) and trigger a 421 
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signalling cascade leading to mTOR activation in vivo and in vitro (106, 187). Whether low-load RET induces 422 
higher oxidative stress than high-load RET remains unclear.  423 

Locally, RONS production is greater with an acute bout of low-load BFR than low-load or high-load RET 424 
(188). The increase in RONS with BFR may be partly due to local hypoxia, which plays an important role in nitric 425 
oxide production (188); however, this study did not involve exercise to failure. Reviews and meta-analyses have 426 
reported that in humans, the inhibition of RONS with the addition of antioxidants has no effect on RET-induced 427 
muscle hypertrophy (182, 189). However, some research in humans have shown attenuation of the hypertrophic 428 
response with vitamins C and E supplementation (190–192), potential reductions in hypertrophy with N-acetyl 429 
cysteine supplementation (186), and complete blunting in neuronal nitric oxide synthase knockout mice (106).  430 

In older individuals (≥ 65 years of age), exercise coupled with 500mg/day of resveratrol increases muscle 431 
strength and fibre area more than exercise alone (193), and dietary antioxidant (vitamin C, E, or β-carotene) 432 
consumption is related to improved muscle strength and increased physical performance (194). The effects of 433 
antioxidant supplementation may, therefore, be age- and dose-dependent. These studies (193, 194) suggest that older 434 
individuals with elevated baseline oxidative stress may also display a diminished hypertrophic response to RET 435 
without supplemental interventions.  436 

These findings imply that excessive and insufficient oxidative stress post-exercise may impair RET-437 
induced muscle hypertrophy. In summary, although oxidative stress may contribute to the hypertrophic response, the 438 
exact involvement of these pathways in low-load RET-induced muscle hypertrophy requires further investigation. 439 
 440 

2. Cell Swelling and Inflammation 441 
During intense exercise, skeletal muscle fibre volumes change rapidly, leading to significant swelling 442 

primarily associated with muscle fatigue (195). These periods of intracellular swelling have been proposed as 443 
mediators of the anabolic response to RET and BFR-RET (72, 82, 83). Acute cell swelling during RET may result 444 
from changes in membrane potential during exercise and the associated redistribution of K+ and Cl-, which has been 445 
reviewed previously (195). This cell swelling increases muscle thickness during an acute bout of both high and low-446 
load RET (196). Additionally, the hypoxic environment and the accumulation of metabolites and blood from RET 447 
and BFR-RET (as discussed previously) create ideal conditions for further increasing cellular swelling, and may also 448 
shift intra- and extracellular water balance (82). It is proposed that this cell swelling activates a volume sensor, 449 
which may initiate signalling cascades such as the mTORC1 and MAPK pathways, ultimately leading to muscle 450 
hypertrophy (82). It should be noted that cell swelling has been previously linked to inflammation, particularly 451 
during ischemia-reperfusion (197), commonly observed with BFR. 452 

Inflammatory cells, particularly neutrophils and macrophages, are commonly elevated in the exercised 453 
muscle tissue following RET in humans (198, 199) and following isometric contractions or passive stretching in 454 
animal models (200, 201). Notably, repeated bouts of these exercises have been linked to subsequent skeletal muscle 455 
hypertrophy. Both neutrophils and macrophages produce free radicals and play a significant role in influencing 456 
oxidative stress. Evidence supporting the role of inflammation in fatigue-induced muscle hypertrophy includes 457 
findings related to the effects of non-steroidal anti-inflammatory drugs (NSAIDs), which have been shown to 458 
modulate inflammatory responses and impact muscle adaptation.  459 

Similar to the relationship between oxidative stress and antioxidants (as discussed previously), hypertrophy 460 
following RET can be enhanced or impaired by NSAID use, with age- and dose-dependent effects (202). RET with 461 
high doses of NSAIDs (>1200mg/day) increases skeletal muscle hypertrophy in older adults more than RET alone 462 
(203). Therefore, older adults with higher inflammatory status at baseline might exhibit a compromised hypertrophic 463 
response without additional interventions, as RET acutely increases inflammation. Conversely, younger individuals 464 
with low baseline inflammatory status who use high doses of NSAIDs (>1200mg/day) could experience a modest 465 
blunting in RET-induced muscle hypertrophy (204). A study on older rats (20 months old) supplemented with an 466 
NSAID (ibuprofen) also found increased muscle protein synthesis and decreased proteolysis compared to a control 467 
group (205).  468 

These findings suggest that excessive and insufficient inflammatory signals may hinder hypertrophy 469 
following RET. For a more in-depth review of the influence of NSAIDs on muscle hypertrophy, we direct the reader 470 
to (202). It should be noted that elevated oxidative stress (discussed previously) can trigger inflammatory responses 471 
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(224), and high levels of inflammation can induce oxidative stress, creating a feedforward loop (206). Although 472 
inflammation likely contributes in some way to the hypertrophic response, the precise role of this process in low-473 
load RET-induced muscle hypertrophy requires further investigation. 474 
 475 

Conclusion 476 
 Fatigue has been identified as a stimulus for eliciting skeletal muscle hypertrophy during chronic low-load 477 
RET. Our literature review suggests the most compelling hypotheses linking fatigue to muscle hypertrophy in the 478 
context of low-load RET center on increased fibre recruitment. Training to task failure increases fibre recruitment, 479 
partially through metabolic stress, which imposes mechanical tension on the newly recruited fibres. This process 480 
appears to be a major contributor to hypertrophy. While intramuscular fatigue may serve as a critical stimulus for 481 
skeletal muscle hypertrophy with low-load RET via various indirect and direct mechanisms, these pathways are not 482 
mutually exclusive. The human body is characterized by redundant signalling pathways that enable multiple signals 483 
and stimuli to concurrently trigger muscle hypertrophy during fatigue-inducing low-load RET (Figure 1). 484 
Consequently, numerous similar mechanisms can induce skeletal muscle hypertrophy across both high- and low-485 
load conditions. Ultimately, whether through direct or indirect mechanisms, volitional exhaustion (i.e., fatigue) 486 
emerges as a crucial factor in optimizing the hypertrophic response during low-load RET.  487 
 488 

Future Directions 489 
 While we have provided an overview of the potential mechanisms by which fatigue during low-load RET 490 
may stimulate skeletal muscle hypertrophy, we acknowledge that this topic has not yet been sufficiently explored. 491 
Consequently, several research areas require further investigation to elucidate the specific mechanisms that may be 492 
similar or different between high- and low-load RET. 493 

Low-load RET may lead to fibre-specific hypertrophy, particularly in type I fibres, due to progressive fibre 494 
recruitment and delayed mechanical tension. However, more research is needed to understand the differences in 495 
fibre-specific hypertrophy among low- and high-load BFR-RET. Beyond the classic hypertrophy observed in the 496 
contractile elements (e.g., myofibers), other non-contractile sarcoplasmic proteins may accumulate within skeletal 497 
muscle fibres. Sarcoplasmic hypertrophy has been discussed previously as an adaptation to RET that may or may 498 
not be possible (11, 207). While some suggest that high-volume training may promote sarcoplasmic hypertrophy to 499 
a greater extent than high-load training (207), relatively few studies have examined sarcoplasmic hypertrophy in this 500 
context. 501 

While potential mechanisms lead us to believe that intracellular Ca2+ transients during muscle contractions 502 
are a possible mechanism, the influence of intracellular Ca2+ contributing to skeletal muscle hypertrophy with low 503 
loads has not been examined in humans. Therefore, we suggest this topic needs further exploration in humans, 504 
especially when comparing high- and low-load RET. Similarly, while myostatin expression can be augmented in 505 
response to RET and skeletal muscle hypertrophy, no studies have compared changes in myostatin signalling after 506 
high- or low-load resistance exercise. 507 

An optimal range of inflammation and oxidative stress may be necessary to maximize the hypertrophic 508 
response to RET, as hypertrophy appears to be attenuated when inflammation or oxidative stress levels are either 509 
excessively high or low. This blunting of the hypertrophic response may be influenced by age-related factors or 510 
pharmacological and nutritional interventions (e.g., NSAIDs or antioxidants). However, the specific molecules and 511 
pathways through which inflammation and RONS may induce hypertrophy remain unclear. Future studies should 512 
focus on examining the effects of specific inflammatory cells or markers, as well as RONS, on muscle hypertrophy. 513 
Understanding these dynamics is essential, as they likely contribute to hypertrophy induced by low-load RET.  514 
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 521 
Figure legends 522 
Figure 1. Proposed mechanisms contributing to low-load fatigue-induced hypertrophy. Direct mechanisms are 523 
defined here as mechanisms that can stimulate hypertrophy and are related to fatigue-induced changes in the muscle 524 
(e.g. increased metabolites, inflammation, substrate depletion). Indirect mechanisms are defined here as mechanisms 525 
that can secondarily induce hypertrophy, not directly via changes resulting from fatigue-inducing RET. Green boxes 526 
represent mechanisms that fatigue will likely induce hypertrophy through low-load resistance exercise training. 527 
Light green dashed boxes represent potential mechanisms in which fatigue may influence hypertrophy through low-528 
load resistance exercise training. Question marks represent mechanisms which are not fully understood. Red boxes 529 
represent mechanisms unlikely to result in hypertrophy from low loads. Lines with arrows represent proposed 530 
mechanisms and pathways that drive the previous mechanism. Dashed lines with arrows represent a mechanism 531 
exerting influence on another, indicating that the process at the arrow's origin can modulate or affect the process at 532 
the arrow’s destination. Dashed lines show an interaction between two mechanisms. 533 
 534 

Figure 2. Proposed effects of load on muscle recruitment, damage, and fatigue in single muscle fibres between the 535 
first and last repetition of acute resistance exercise.  536 
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Mechanisms of Fatigue-Induced Skeletal 
Muscle Hypertrophy with Low-Load 

Resistance Training

Low-load resistance exercise has been proposed to increase skeletal muscle hypertrophy through multiple 
mechanisms; however, we propose that exercise-induced fatigue plays a key role in the hypertrophic response via 

mechanisms that increase muscle fibre recruitment during volitional exhaustion, as well as via increased 
mechanical tension on the newly recruited fibres.Downloaded from journals.physiology.org/journal/ajpcell at (083.061.228.125) on January 11, 2025.
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