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ABSTRACT
Creatine monohydrate supplementation (CrM) is a safe and 
effective intervention for improving certain aspects of sport, 
exercise performance, and health across the lifespan. Despite 
its evidence-based pedigree, several questions and misconcep
tions about CrM remain. To initially address some of these 
concerns, our group published a narrative review in 2021 dis
cussing the scientific evidence as to whether CrM leads to water 
retention and fat accumulation, is a steroid, causes hair loss, 
dehydration or muscle cramping, adversely affects renal and 
liver function, and if CrM is safe and/or effective for children, 
adolescents, biological females, and older adults. As a follow- 
up, the purpose of this paper is to evaluate additional questions 
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and misconceptions about CrM. These include but are not 
limited to: 1. Can CrM provide muscle benefits without exercise? 
2. Does the timing of CrM really matter? 3. Does the addition of 
other compounds with CrM enhance its effectiveness? 4. Does 
CrM and caffeine oppose each other? 5. Does CrM increase the 
rates of muscle protein synthesis or breakdown? 6. Is CrM an 
anti-inflammatory intervention? 7. Can CrM increase recovery 
following injury, surgery, and/or immobilization? 8. Does CrM 
cause cancer? 9. Will CrM increase urine production? 10. Does 
CrM influence blood pressure? 11. Is CrM safe to consume 
during pregnancy? 12. Does CrM enhance performance in ado
lescents? 13. Does CrM adversely affect male fertility? 14. Does 
the brain require a higher dose of CrM than skeletal muscle? 15. 
Can CrM attenuate symptoms of sleep deprivation? 16. Will CrM 
reduce the severity of and/or improve recovery from traumatic 
brain injury? Similar to our 2021 paper, an international team of 
creatine research experts was formed to perform a narrative 
review of the literature regarding CrM to formulate evidence- 
based responses to the aforementioned misconceptions invol
ving CrM.

1. Introduction

Creatine (methylguanidine-acetic acid) was first isolated in the 1830’s [1] but it was not 
until the 1990’s when creatine monohydrate research really emerged following seminal 
studies by Harris et al. [2] and Hultman et al. [3] who found that different dosages of CrM 
influenced plasma and intramuscular creatine levels. To date, there are ≥ 1000 peer- 
refereed papers involving CrM [4]. Collectively, CrM appears safe [5–7] and is one of the 
most effective dietary interventions for improving aspects of sport, exercise performance 
and health across the lifespan [4,8,9]. Despite the wealth of knowledge regarding CrM and 
robust body of literature supporting the diverse benefits, numerous questions and mis
conceptions about CrM remain prevalent. To initially address some of these questions and 
misconceptions, we published a narrative review ‘Common questions and misconcep
tions about creatine supplementation: what does the scientific evidence really show’ [10]. 
This paper addressed whether CrM leads to water retention and fat accumulation, is 
a steroid, causes hair loss, dehydration or muscle cramping, adversely affects renal and 
liver function, and if CrM is safe and/or effective for children, adolescents, biological 
females and older adults.

Despite the initial paper, many questions and misconceptions regarding CrM remain 
prevalent in social media and clinical practice. These include but are not limited to: 1. Can 
CrM provide muscle benefits without exercise? 2. Does the timing of CrM ingestion really 
matter? 3. Does the addition of other compounds with CrM enhance its effectiveness? 4. 
Does CrM and caffeine oppose each other? 5. Does CrM increase the rates of muscle 
protein synthesis? 6. Is CrM an anti-inflammatory intervention? 7. Can CrM increase 
recovery following injury, surgery and/or immobilization? 8. Does CrM cause cancer? 9. 
Will CrM increase urination? 10. Does CrM influence blood pressure? 11. Is CrM safe to 
consume during pregnancy? 12. Does CrM enhance performance in children and adoles
cents? 13. Does CrM adversely affect male fertility? 14. Does the brain require a higher 
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dose of CrM than skeletal muscle? 15. Can CrM attenuate symptoms of sleep deprivation? 
16. Will CrM reduce the severity of and/or improve recovery from traumatic brain injury?

To address these questions, an internationally renowned team of creatine research 
experts was again formed to perform a narrative review of the literature regarding CrM to 
formulate evidence-based responses to misconceptions mentioned earlier involving CrM.

2. Can CrM provide muscle benefits without exercise?

Creatine is primarily stored within skeletal muscle and helps facilitate the production of 
adenosine triphosphate (ATP) within the cell, thereby serving an important role in energy 
production. As a result, there is some evidence that CrM (without an exercise intervention) 
can significantly increase total creatine stores and may improve exercise performance 
[11]. For example, Harris et al. [2] and Hultman et al. [3] showed that a 4.5–10 day CrM 
protocol at ~ 20 grams/day (referred to as creatine-loading) could increase the total 
creatine pool (phosphocreatine [PCr] and free creatine; mmol/kg dm) in human muscle. 
Similar increases in the skeletal muscle creatine pool were seen with the ingestion of 3 
grams/day for 28 days [3]. Increased intramuscular creatine levels may help explain some 
of the improvements observed in the literature on upper- and lower-body strength, 
anaerobic and physical working capacity, and sprint performance in a hot and humid 
environment [12–17] in healthy, despite no exercise intervention.

Syrotuik and Bell [18] found that individuals who exhibited a significant increase in 
total intramuscular creatine (greater than 20 mmol·kg− 1 dry weight) after a 5 day CrM 
loading protocol, termed “responders,” demonstrated significant improvements in 
strength. However, not all participants exceeded this 20 mmol·kg− 1 dry weight threshold. 
The individual responsiveness to CrM varies depending on several factors, including low 
resting (pre-supplementation) muscle creatine stores, age, biological sex, type II muscle 
fiber percentage, physical activity patterns, and habitual dietary intake of creatine [18–20]. 
Individuals who adhere to vegan, vegetarian, or emphasize plant-based diets tend to have 
lower baseline creatine levels compared to those on omnivore or carnivore diets due to 
the absence or reduction in creatine-rich animal-based foods (i.e. seafood, meat) and may 
respond differently to CrM strategies [21,22]. For example, Watt et al. [23] found that CrM 
(0.4 grams/kg/day for 5 days or ~ 30 grams/day) significantly increased muscle total 
creatine content more in vegetarians (n = 7; 28 years of age) compared to non- 
vegetarians (n = 7; 23 years of age; consumed ≥ 2 servings of meat/week). Whether this 
translates to greater improvements in muscle performance without exercise remains to 
be elucidated. Furthermore, older adults (>65 years) may respond favorably to CrM as 
there is some evidence that they have reduced skeletal muscle creatine stores compared 
to younger adults [19] and experience a decline in lean tissue mass, strength, and power 
over time [24]. Subsequently, CrM may be a viable and effective strategy to offset these 
age-related consequences of biological aging [19]. Further, CrM alone has resulted in 
delayed measures of fatigue in older adults. The Physical Working Capacity at Fatigue 
Threshold (PWCFT), a submaximal cycle ergometer test developed by deVries et al. [25], is 
useful for evaluating the capacity for physical work, the ability to delay fatigue, and for 
screening older individuals at risk for sarcopenia [26]. Stout et al. [27] reported that 14  
days of CrM (20 grams/day for 7 days followed by 10 grams/day for 7 days) without an 
exercise intervention significantly increased PWCFT by 15.6% and grip strength by 6.7% in 
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men and women aged 64–86 years. Although this increase in PWCFT was approximately 
half of the 28% increase observed in the study by deVries et al. [28], which examined 
10 weeks of moderate-intensity endurance training, the improvement in PWCFT with CrM 
alone is still notable, considering the absence of exercise. Forbes et al. [11] performed 
a narrative review summarizing the small body of research examining the efficacy of CrM 
without exercise training and concluded that CrM improved measures of fat-free mass, 
functional ability (i.e. sit-to-stand), and reduced lower-body fatigue. It is important to note 
that the majority of studies included in this review used a CrM “loading” phase (20 grams/ 
day for 7–10 days) or high daily dosages (17–26 grams/day) of CrM. Studies that did not 
utilize a CrM loading strategy failed to observe any beneficial effects [29,30].

In summary, CrM can provide some muscle performance benefits even without 
exercise. Populations with lower baseline creatine levels, such as vegans and vegetar
ians, may experience a greater response to CrM.

3. Does the timing of CrM ingestion really matter?

The notion that the timing of CrM (in close proximity to exercise) may influence the 
physiological adaptations from exercise (primarily resistance training) has historically 
relied on speculative mechanisms (for reviews, see Candow et al. [31] and Ribeiro et al. 
[32]). Exercise-induced hyperemia, which is influenced by exercise duration and intensity 
[33,34], could theoretically affect the delivery and uptake of creatine by skeletal muscle 
[35,36], though this effect is suppressed shortly (~30 minutes) after exercise cessation. In 
this context, a single dose of CrM (i.e. 5 grams) may take up to 2 hours to achieve peak 
levels in the blood following ingestion [2], rendering CrM supplementation immediately 
before, during, or after a typical resistance training session (e.g. 40–90 minutes) [37] most 
likely insignificant [32,38]. However, exercise may also modulate sodium (Na+)/potassium 
(K+) pump activity, which could contribute to creatine transport and accumulation in 
active tissues [39,40]. Therefore, similar to hyperemia, pre-exercise CrM-induced elevation 
in circulating creatine levels could work in conjunction with Na+/K+ pump activation, thus 
theoretically favoring tissue uptake and retention. The effect of skeletal muscle contrac
tions on enhanced creatine uptake has been shown over the short term [2]; however, it is 
unknown whether this may favor longer-term creatine storage past its saturation in 
skeletal muscle. In theory, CrM timing may be more relevant during the initial stages of 
a supplementation regimen to enhance creatine uptake and retention until saturation is 
achieved [38].

Studies directly investigating the timing of CrM are scarce and most lack adequate 
experimental control (i.e. placebo comparator) and have small sample sizes resulting in 
low statistical power. Despite Cribb and Hayes [41] showing greater total muscle creatine 
(and glycogen) levels in bodybuilders supplementing immediately before and immedi
ately after each resistance training session vs. supplementing in the morning and evening; 
this was a single-blinded experiment using a multi-ingredient supplement containing 
protein and carbohydrates, limiting further conclusions. More recently, Forbes et al. [42] 
showed similar effects in muscle strength and regional muscle thickness gains after either 
pre- or post-resistance training CrM (0.1 grams/kg/day for 8 weeks) in young recreation
ally active adults (n = 10). These results have been further corroborated by Candow et al. 
[43], Antonio and Ciccone et al. [44], Jurado-Castro et al. [45] and Dinan et al. [46], all 
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showing similar effects in resistance training-induced adaptations, independent of the 
timing of CrM. In the only study that compared the strategic timing of CrM to a placebo 
group, Candow et al. [47] reported similar changes in whole-body lean tissue mass (as 
measured using dual-energy x-ray absorptiometry) and muscle strength (leg press and 
chest press 1-repetition maximum) after 32 weeks of CrM (0.1 grams/kg or ~ 8 grams 
immediately before or after each resistance training session; 3 ×/week) in healthy older 
adults (≥50 years of age). Interestingly, the group who consumed CrM post-exercise had 
greater improvements in whole-body lean tissue mass over time compared to the placebo 
group. Additionally, there were no differences in whole-body lean tissue mass increases 
between the pre-exercise CrM group and placebo group. Certainly, the existing literature 
on the topic has notable limitations, such as a lack of actual creatine retention measure
ments, precluding the ability to directly determine the time course of creatine uptake 
during a resistance training program as a function of its supplementation strategy, thus 
warranting further research.

In summary, the current body of evidence does not validate that the timing of CrM is 
critically important in relation to long-term resistance training, as both pre- and post- 
exercise CrM seem equally effective in promoting resistance training-mediated gains 
in lean tissue accretion and muscle performance. Consistent ingestion of CrM during 
a resistance training program is likely the most important variable to consider.

4. Does the addition of other compounds to CrM enhance its effectiveness?

CrM is effective whether it is co-ingested with other nutrients or not [8,48]. However, there 
is evidence that creatine uptake into skeletal muscle can be enhanced by glucose 
ingestion and/or insulin [49–53]. For example, Green et al. [54] reported that the combi
nation of CrM (5 grams), dextrose (18 grams) and glucose (95 grams) promoted greater 
muscle creatine retention over time. Additionally, Nelson et al. [55] and Roberts et al. [36] 
showed that CrM had favorable effects on glycogen resynthesis. Burke et al. [56] examined 
the combined effects of CrM with alpha-lipoic acid (known to enhance glucose uptake) 
and sucrose compared to CrM and sucrose or CrM alone on intramuscular creatine uptake 
and retention. Results revealed a significantly greater increase in intramuscular phospho
creatine and total creatine in the CrM, alpha-lipoic acid and sucrose group compared to 
the other groups. Despite greater increases in creatine uptake and retention over the 
short term, there is limited evidence that the combination of CrM and carbohydrates or 
other insulin-sensitizing nutrients lead to greater changes in body composition or per
formance (i.e. increases in muscular strength), or that it affects the maximal levels attained 
after a period of supplementation.

In addition to carbohydrates, there has been some interest as to whether protein or 
a metabolite of the essential amino acid leucine (i.e. beta-hydroxy-beta-methylbutyrate 
[HMB]) can enhance the effectiveness of CrM. For example, Steenge et al. [49] reported 
that CrM (4 × 5 grams/day) with either a high amount of carbohydrates (96 grams) or 
moderate amount of carbohydrates (47 grams) plus 50 grams of protein resulted in 
greater creatine uptake and retention compared to CrM. Cribb et al. [57] and Cornish 
et al. [58] reported that CrM combined with carbohydrate, whey protein and/or 
conjugated linoleic acid (CLA) promoted greater gains in strength and lean tissue 
mass. There is also some evidence that CrM (0.1 grams/kg/day) and whey protein (0.3 
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grams/kg/day) increased lean tissue mass (+5.6%) and bench press strength (+25%) 
after 10 weeks of resistance training in healthy older males compared to CrM or 
placebo [59]. However, others have not observed the same benefits from CrM and 
protein [60,61]. In regards to HMB, the change in absolute power achieved at 8 mmol/L 
of lactate was greater in the CrM plus HMB group compared to either CrM or HMB 
alone or placebo during a rowing exercise test in endurance-trained young male [62]. 
In contrast, others have not found greater benefits from the combination of CrM and 
HMB supplementation on changes in body composition or muscle performance com
pared to CrM alone [59–61,63].

In regards to other possible potentiating ingredients, CrM with sodium bicarbonate 
(e.g. 0.3 grams/kg/day) promoted greater performance benefits (e.g. repeated sprint 
performance, soccer specific performance, and anaerobic performance) than CrM or 
sodium bicarbonate alone [64–67]. Similarly, CrM with β-alanine provided additive ben
efits in vertical jump [68], and resulted in greater gains in lean tissue mass in power lifting 
athletes compared to creatine alone [69]. However, the combination of CrM and β-alanine 
failed to improve physical working capacity at the neuromuscular fatigue threshold [70], 
or VO2 peak, time to exhaustion, power output or oxygen uptake associated with 
ventilatory threshold or lactate threshold [71]. Kerksick et al., [72] examined the effects 
of CrM (20 grams/day for 5 days; 5 grams/day for remaining 23 days) with and without 
D-pinitol during 4 weeks of resistance training in young resistance-trained males. 
Intramuscular creatine stores and upper-and lower body muscular strength increased 
similarly in both groups; however, the CrM group experienced greater improvements in 
lean tissue and fat-free mass (p < 0.05) compared to the CrM and D-pinitol group [72]. 
Further, Taylor et al. [73] had resistance-trained men (n = 47) ingest either 5 grams of CrM  
+ 70 grams of dextrose, 3.5 grams of CrM with 900 mg fenugreek extract or a placebo (70 
grams of dextrose) for four days a week for 8 weeks. Participants ingesting CrM experi
enced similar changes in lean tissue mass and muscle strength compared those on 
placebo. Similarly, co-ingesting CrM with cinnamon extract (0.5 grams) [74] and Russian 
tarragon (0.5 grams 30 minutes before ingesting creatine) [75] does not affect whole-body 
creatine retention, muscle-free creatine, or anaerobic sprint capacity. Additionally, since 
creatine uptake into the cell increases intracellular hydration, research has evaluated 
whether co-ingesting CrM with glycerol and water can promote greater fluid retention 
than glycerol with water [76–78]. These studies generally indicate that co-ingesting 
creatine (e.g. 11.4 grams/day) with glycerol (2 × 1 grams/kg/day) for 7 days increases 
total body water [77,79] without altering plasma volume [76] thereby improving thermo
regulation during exercise in hot and humid environments [76,77,79].

In summary, there is some evidence that the combination of CrM with other 
purported ergogenic compounds (i.e. carbohydrate, protein) can accelerate intramus
cular creatine accumulation and potentially increase exercise-related training 
adaptations.

5. Does CrM and caffeine oppose each other?

Combined ingestion of CrM and caffeine is common due to the daily ingestion of 
caffeine or combined ingredients in many pre-workout supplements. Due to the 
popularity and efficacy of both ingredients, as well as their independent mechanistic 
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effects on exercise performance, concurrent ingestion and potential interactions have 
gained interest. Early research reported that CrM administered in a caffeinated bev
erage significantly augmented muscle creatine content [80], and the independent 
pharmacokinetic properties of creatine and caffeine do not appear to be altered 
when consumed together [81].

Creatine and caffeine have independent ergogenic mechanisms. CrM is known for its 
ability to increase muscle creatine storage, resulting in greater rephosphorylation of 
adenosine diphosphate. Whereas caffeine’s positive effects on exercise are attributed to 
its properties as an adenosine receptor antagonist, potentiation of calcium release from 
the sarcoplasmic reticulum, along with peripheral effects on substrate utilization and 
accelerating sodium/potassium pump activity [82]. While these effects are independent, 
caffeine has been shown to facilitate creatine uptake by stimulating creatine transporters 
within the sarcolemma [83]. Specifically, caffeine may activate the sodium-potassium 
ATPase pump, increasing the sodium gradient along the sarcolemma. Creatine transpor
ters rely on extracellular sodium levels, which may be stimulated by the caffeine induced 
sodium gradient. Thus, some have hypothesized that CrM and caffeine may result in 
synergistic effects. However, other evidence suggests caffeine may attenuate the ergo
genic effects of CrM due to opposing effects on calcium kinetics at the sarcoplasmic 
reticulum [84], delaying relaxation times and, therefore, reducing exercise performance. 
Additionally, it has been theorized that co-ingestion of CrM and caffeine would increase 
symptoms of gastrointestinal distress, which could indirectly reduce performance [83,85]. 
Vandenberghe et al. [83] examined concomitant ingestion of CrM and caffeine and had 
three participants report minor gastrointestinal distress (two participants in the CrM only 
group and one participant in the CrM plus caffeine group). Despite the popularity and 
efficacy of these two ingredients there is still minimal research exploring the performance 
effects of co-ingestion with more recent systematic reviews describing 10 relevant studies 
[86,87]. Available studies have explored acute caffeine intake after CrM loading, or more 
chronic (>3 days) of combined caffeine and CrM. Collectively, when a single dose of 
caffeine is consumed acutely (5–6 mg/kg), within 60 minutes prior to exercise, after 
a CrM loading period (0.3 grams/kg/day for 5–6 days), there seems to be an additive 
effect on aerobic exercise performance more than CrM alone [87–89]. In contrast, one 
study to date has demonstrated no additive effect of caffeine (3 mg/kg) after 6 days of 
CrM loading (0.3 grams/kg/day) [90].

When evaluating chronic caffeine ingestion (300 mg/day or 5 mg/kg/day) along with 
CrM loading (0.5 grams/kg/day or 20 grams/day) for 3–5 days, no added benefits on 
maximal force [83], upper or lower body max strength [85,91], or repetitions to fatigue 
[85] have been reported. One study to date has explored combined ingestion of caffeine 
(6 mg/kg/day) and CrM (3 grams/day) for 3 days, and demonstrated improved maximal 
knee extension torque compared to CrM alone [92]. A similar combined dosing strategy 
involving CrM (20 grams/day for 4 days or 0.5 grams/kg/day for 1 day) and 5 mg/kg/day of 
caffeine resulted in interference between the two ingredients [83,84], and three other 
studies reported no effect [81,85,91]. Similarly, combining daily caffeine (300 mg or 5 mg/ 
kg for 3–5 days) during a creatine loading period also does not seem to provide additional 
exercise benefits [86]. Importantly, despite the lack of effect on performance, there also do 
not appear to be consistent detrimental effects, thus the ingredients likely do not oppose 
each other, but also likely do not accelerate ergogenic effects when habitually consumed. 
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The potential opposing effects of caffeine with CrM are more likely influenced by doses of 
caffeine ≥5 mg/kg, as well as with individuals who have a lower tolerance to caffeine [86].

Additional considerations should be given to the increase in daily creatine use 
(3–10 grams/day) for benefits beyond just performance. The impact of daily caf
feine intake on this daily CrM strategy has not yet been evaluated. Based on their 
mechanisms, CrM and caffeine likely do not oppose each other when consumed 
together during the short-term. However, they are also unlikely to provide addi
tional benefits unless CrM has been taken daily long enough to saturate muscle 
stores, similar to a loading phase.

In summary, short-term CrM and caffeine ingestion (<5 mg/kg/day) likely does 
not cause opposing muscle effects. The long-term possible interference effects of 
CrM and caffeine are unknown. Consider acute caffeine intake after CrM loading 
for potential performance benefits. Chronic caffeine use, combined with CrM 
loading, does not result in greater exercise effects. This combined strategy 
may increase gastrointestinal distress and may indirectly interfere with 
performance.

6. Does CrM influence the rates of muscle protein synthesis or breakdown?

The benefits of CrM for increasing muscle mass during resistance training are well 
established (for reviews see Burke et al. [93], Chilibeck et al. [19], and Forbes and 
Candow [94]). These skeletal muscle benefits are likely attributable, in part, to crea
tine’s positive influence on growth-related myogenic transcription factors, satellite cell 
activity and insulin-like growth-factor I [19]. However, the extent to which CrM influ
ences measures of muscle protein kinetics remain ambiguous. Louis et al. [95] exam
ined the effects of CrM (21 grams/day for 5 days) on the rates of muscle protein 
synthesis during fasted and fed states in a small group of males (n = 6). The authors 
reported that feeding significantly doubled the rates of muscle protein synthesis by 
40%, but CrM did not alter these responses. The same research group also examined 
the effects of short-term CrM (21 grams/day for 5 days) in conjunction with single-leg 
resistance exercise [96]. Stable isotope techniques were used to measure myofibrillar 
and sarcoplasmic protein synthetic rates. The resistance exercise bout increased syn
thetic rates two- to threefold, but the addition of CrM did not augment these effects. 
Parise et al. [97] examined the effects of short-term CrM (20 grams/day for 5 days 
followed by 5 grams/day for another 3–4 days) in healthy young men (n = 13) and 
women (n = 14). In men only, CrM reduced the rate of leucine oxidation by 19.6% and 
decreased the rate of plasma leucine appearance (an indicator of muscle protein 
catabolism) by 7.5%, indicating a potential anti-catabolic effect. In healthy older 
men, CrM (0.1 grams/kg/day) during 10 weeks of supervised, whole-body resistance 
training reduced the urinary excretion of 3-methylhistidine (3-MH; an indicator of 
whole-body protein catabolism) by 40% compared to a 29% increase for those 
ingesting placebo [98]. Similarly, healthy older men supplementing with CrM (0.1 
grams/kg/day) during 12 weeks of resistance training experienced a significant 
decrease in 3-MH. However, older women on creatine did not experience the same 
anti-catabolic effects [99].
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In summary, a small body of research shows that CrM does not increase the rates of 
muscle protein synthesis. However, there is some existing evidence to support the anti- 
catabolic effects of CrM in men.

7. Is CrM an anti-inflammatory intervention?

There is preliminary evidence that CrM can attenuate markers of oxidative stress and the 
inflammatory process in humans, thereby implicating a possible anti-inflammatory role 
for CrM in a variety of cells and tissue types [100]. However, the mechanisms by which CrM 
imposes its anti-inflammatory effects are not well understood. The initial occurrence from 
an acute phase inflammatory response involves the increased secretion of pro- 
inflammatory mediators such as interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α), and 
IL-1β [101], and, in response to strenuous exercise, IL-6, interferon-γ (INF-γ), and C-reactive 
protein (CRP) have been shown to increase [102]. Strenuous exercise has also been shown 
to increase prostaglandin E2 (PGE2) instigated by muscle damage [103]. However, CrM (20 
grams/day for 5 days) prior to a 3 km race attenuated increases in plasma TNF-α and PGE2, 
compared to placebo, 24 hours following the race [104]. Similarly, CrM for 5 days at a dose 
of 20 grams/day prior to a half-ironman competition attenuated the increase in plasma 
levels of TNF-α, INF-γ, IL-1β, and PGE2 at 24- and 48-hours following the competition 
compared to placebo [105]. In an anaerobic exercise scenario, CrM for 7 days at a daily 
dose of 0.3 grams/kg prior to repeated-sprint exercise resulted in attenuations in TNF-α 
and CRP at 1-hour post-exercise but had no impact on the oxidative stress markers, 
superoxide dismutase (SOD) and catalase [106]. Furthermore, Rawson et al. [107] found 
no effect of 10 days of CrM (0.3 grams/kg/day) on CRP concentrations following acute 
resistance exercise (5 sets of 15–20 repetitions at 50% of 1-repetition maximum for the 
back squat exercise) in healthy resistance-trained men. Collectively, these findings sug
gest that CrM may be anti-inflammatory following aerobic exercise compared to resis
tance training; however, these results may be related to exercise volume and not exercise 
modality.

In summary, short-term CrM may reduce some markers of inflammation, primarily 
in response to aerobic-type activities. Further research is needed to determine the 
long-term mechanistic effects of CrM on inflammatory responses to exercise.

8. Can CrM increase recovery following injury, surgery and/or 
immobilization?

The potential therapeutic utility of CrM for enhancing recovery from injury, surgery and/ 
or immobilization likely relies on its bioenergetic role as an intracellular energy buffer. In 
these conditions, increased creatine content may offset critical intracellular loss of 
energy (both in muscle and brain), facilitate the rehabilitation of disuse atrophy and 
accelerate functional recovery [108,109]. While these assertions seem to be supported 
by pre-clinical data, clinical trials, which are in their infancy, have shown mixed out
comes. Hausmann et al. [110] found protective effects of CrM in an animal model of 
spinal cord injury. Twenty adult rats were fed for 4 weeks with or without CrM (5 grams/ 
100 grams of dry food) before undergoing a moderate spinal cord contusion. Rats on 
CrM showed better posttraumatic locomotor capacity vs. controls 1 and 2 weeks after 
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the injury. Furthermore, histological analysis of the lesion site showed slightly smaller 
scar tissue in supplemented animals, suggesting a reduced spread of secondary injury. 
Based on these findings, the authors concluded that CrM could be useful as 
a neuroprotective aid in cases of elective surgery within the spinal cord. Ozkan et al. 
[111] investigated the effects of CrM (300 mg/kg) vs. control on the muscle reinnerva
tion of Wistar rats, which had the sciatic nerve experimentally denervated. Rats then had 
their nerves either repaired with epineural stitches or had the proximal and distal ends 
of the nerves ligated, with no neural anastomosis. Six months following the procedure, 
CrM was able to improve the functional properties of denervated muscle (which 
included histomorphometry and histochemical assessments) in both surgically repaired 
and unrepaired nerve injuries. These findings led the authors to suggest that CrM could 
be useful in preventing muscle wasting owing to disuse.

Despite these promising results in animal models, results from human trials are less 
robust. Hespel et al. [112] conducted a double-blind trial in which young healthy partici
pants (n = 22) had their right leg immobilized using a plaster-cast for 2 weeks. Participants 
then underwent a knee-extension rehabilitation program for 10 weeks, while receiving 
either CrM (15 grams for the first 3 weeks followed by 5 grams for 7 weeks) or placebo. 
Prior to and after immobilization, and after 3 and 10 weeks of the rehabilitation stage, 
quadriceps cross-sectional area, isokinetic knee-extension power and myogenic transcrip
tion factors were assessed. The authors observed that CrM promoted muscle hypertrophy 
during rehabilitative strength training, which was possibly mediated by modulation of the 
myogenic regulatory factors MRF4 and myogenin expression, both being intracellular 
proteins that promote muscle growth or through enhanced training capacity due to 
greater intramuscular PCr and creatine stores. These results expand on the work by 
Johnston et al. [113] who showed that CrM (20 grams/day for 7 days) preserved lean 
tissue mass and muscle performance in young healthy adults who volunteered to have 
their upper limb immobilized (plaster-cast) compared to placebo. Contrary to these 
findings, Backx et al. [114] failed to demonstrate beneficial effects of CrM in healthy 
young men (n = 30) randomly assigned to receive either CrM (20 grams/day) or placebo 
for 5 days before one leg was immobilized using a cast for 7 days. Neither the immobiliza
tion-induced decrease in quadriceps cross-sectional area nor the decrease in 1-repetition 
maximum knee extension performance were prevented by CrM, likely suggesting incon
sistency in efficacy between short- (1 week) and long-term (3 to 10 weeks) use of this 
supplementation strategy.

Results are also conflicting in clinical populations. In a crossover fashion, patients with 
complete cervical-level spinal cord injury (n = 16) were given CrM (20 grams/day) or 
placebo for 7 days. Incremental peak arm ergometry tests were performed following 
each condition. As compared to placebo, CrM increased VO2max, VCO2, and tidal volume 
at peak effort, suggesting potential enhancements in exercise capacity in this population. 
In contrast, a randomized clinical trial of CrM (20 grams/day for the first 7 days, followed 
by 5 grams/day for 12 weeks) vs. placebo for patients who underwent anterior cruciate 
ligament reconstruction (n = 60) produced null findings [115]. Quadriceps and hamstring 
strength and power were measured by an isokinetic dynamometer prior to surgery and at 
6 weeks, 12 weeks, or 6 months after surgery. Strength improvements were seen over 
time as result of the rehabilitation program, but CrM did not enhance the recovery 
beyond those found from the rehabilitation program alone.
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In summary, mechanistic and pre-clinical data suggest that CrM has the potential to 
enhance recovery following injury, surgery, or immobilization. However, clinical data 
remain scarce and conflicting. Confounding factors include CrM protocol (short- or 
long-term), combination with other therapies (exercise rehabilitation), and type of 
condition (transitory vs. permanent injury; orthopedic vs. neuromuscular injury). 
Further, well-powered, randomized controlled trials should address these gaps.

9. Does CrM cause cancer?

A large amount of negative press claiming that CrM causes cancer emerged after a review 
paper summarized the potential for CrM and creatinine (a metabolic by-product of 
creatine metabolism) to produce mutagenic/carcinogenic compounds [116]. This paper 
provided an in-depth review of the literature regarding the potential for CrM and 
creatinine to be involved in biochemical reactions leading to the production of mutagenic 
compounds (heterocyclic amines) and concluded that (these compounds, not CrM per se), 
may impose only a minor health risk [116]. In brief, they highlighted the data showing that 
the consumption of cooked and processed meats (containing creatine and creatinine) led 
to the production of mutagenic compounds such as amino-imidazo-azaarenes (AIA) and 
that the amount was proportionate to the amount of creatine/creatinine in meat, the 
amount of sugar (especially fructose) and amino acids, and the cooking methods. For AIA 
to become carcinogenic there are a series of other metabolic reactions that must occur 
before they attain mutagenic (DNA guanidine adducts) potential. Nitrites are formed in 
the mouth and stomach from dietary nitrates and creatinine can be nitrosylated to form 
N-methyl-N-nitrosourea, sarcosine and N-nitrososarcosine [117,118]. Some of these nitro
sylated compounds can be mutagenic in the Ames test. There is a positive correlation 
between dietary nitrate/nitrite intake and mortality from gastric cancer mortality, with 
a lowering of gastric cancer incidence in the United States, co-temporal with a reduction 
in gastric nitrate/nitrite load from 1925 to 1981 [119,120]. Collectively, this body of 
literature supports the recommendation that people should limit the consumption of 
highly processed, overcooked (very prolonged cooking, blackened [i.e. barbeque; BBQ] 
flesh containing creatine and creatinine [meat, fish]). Interestingly, when pigs were fed 
high doses of CrM (50 grams/day), there was no increase in the levels of heterocyclic 
amines in the meat from supplemented vs non-supplemented animals [121]. Importantly, 
there is no evidence that CrM at typical recommended levels (i.e. 3–5 grams/day) would 
lead to the production of such carcinogenic compounds without simultaneously being 
exposed to high temperatures, amino acids, nitrites and sugars. Indeed, CrM at 7 grams/ 
day for 7 days followed by ≤ 5 grams/day for 23 days does not lead to an increase in 
carcinogenic heterocyclic amines in young males and females [122]; an epidemiological 
study in > 7000 men and women found that a lower dietary creatine intake was associated 
with a slightly higher risk of cancer (which remained after controlling for moderate 
physical activity and other lifestyle factors) [123]; and most pre-clinical studies showing 
in vivo carcinogenesis used heterocyclic amines at much higher amounts than those 
found in cooked/processed meats.

A second “peak” in the speculation that CrM causes cancer resulted from 
a paper looking at cancer metastasis in a murine (rodent) model and concluded 
that CrM in cancer survivors promotes cancer metastasis [124]. In brief, this study 
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found that cancer cells upregulate glycine amidino transferase (GATM) expression 
to increase intra-cellular creatine production and that blocking this up-regulation 
attenuated metastasis. They also found that CrM (5 % wet-weight; w/w) did not 
alter primary colonic tumor growth (and even mildly suppressed it) but enhanced 
the metastases to the liver [124]. There are several caveats to this study including 
that the 5 % w/w CrM supplement dose used is equivalent to ~ 28 grams of CrM/ 
day in humans or 5–9 times the typical recommended CrM long-term dose of 3–5 
grams/day. Secondly, the metastases were in the liver and liver inflammation 
appears to be a species specific side effect of CrM in mice but not in rats or 
humans [125]. Furthermore, it is clear that cancer cells are voracious consumers of 
energy and promiscuous in terms of the type of energy source needed to support 
rapid growth and metastasis. The Warburg effect is a cancer cell specific upregula
tion of glycolytic flux that increases the flux of carbon from glucose to 3-phos
phoglycerate toward DNA synthesis through the serine-glycine-one carbon (SGOC) 
pathway [126]. Due to the high energetic demand from rapidly growing tumor 
cells, it is also not surprising that many tumor cells express high level of cytosolic 
creatine kinase (CK-BB) [127], and ubiquitous mitochondrial CK (CKMT1) [128,129]. 
In fact, this phenomenon was targeted using cyclocreatine to block the reaction 
and attenuate energy transduction and hence carcinogenesis in several studies 
[130,131]. Another complicating issue is that tumor cells can alter aspects of 
creatine metabolism when they transition from primary tumors to metastatic 
tumors with the former expressing high levels of CKMT1 and the latter showing 
down-regulation [129]. The down-regulation of CKMT1 is associated with higher 
levels of reactive oxygen species that promote metastasis dependent expression of 
adhesion and matrix degradation proteins that are protected using anti-oxidants 
[129]. As a consequence of the high metabolic demand of cancer cells, the chan
ging dynamics of metabolism between and within different types of cancer cells as 
they transition from a primary to a metastatic cancer makes conclusions about 
when a metabolic substrate could be deleterious, neutral or beneficial to a patient 
with a primary or metastatic tumor very complicated. Indeed, other studies have 
shown that creatine does not promote tumor growth or proliferation [132], or is 
protective in some cancer models [133–135], possibly by up-regulating the energy 
supply to anti-cancer T-cells [133,136].

A final consideration regarding CrM and cancer comes from the strong evidence 
that CrM can protect against several deleterious health consequences from tumor (i.e. 
cancer cachexia) and/or the treatment (i.e. chemotherapy). Cancer cachexia refers to 
the loss of lean tissue mass in response to the flux of energy to the growing tumor, 
lower energy intake due to the tumor and/or chemotherapy and in response to 
cytokines that alter metabolism and appetite. Given the well established benefits of 
CrM on measures of lean tissue mass and performance [137–140], it is not surprising 
that several studies are planned to evaluate the benefits of exercise training and CrM 
in cancer survivors [141–143]. Many studies have shown the benefits of CrM with or 
without exercise training to attenuate the deleterious effects of chemotherapy (dox
orubicin) upon lean tissue mass and function [144–148], and one study found that 
children treated with prednisone for acute lymphoblastic leukemia had lower body fat 
when supplemented with CrM [149].
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In summary, evidence-based research does not support that CrM (3–5 grams/day) in 
humans increases the formation of carcinogenic compounds or cancer risk (primary or 
metastasis). It is likely to be beneficial to help protect and/or recover from the skeletal 
muscle and body composition issues associated with cancer per se and/or the effects of 
chemotherapy. It is prudent to limit the intake of highly processed and/or overcooked 
meats/fish (i.e. BBQ) to lower the risk of gastric cancers.

10. Will CrM increase urine production?

Urine production is a finely regulated process primarily controlled by the kidneys through 
intricate mechanisms involving filtration, reabsorption, and secretion [150]. Key factors 
influencing urine production include the glomerular filtration rate (GFR), hormonal reg
ulation, fluid intake, solute load, and renal perfusion pressure. These factors collectively 
determine the volume and concentration of urine produced by the body to maintain fluid 
and electrolyte balance [150]. One common misconception is that CrM directly leads to 
increased urine production. However, scientific evidence (though very few studies use 
urine volume as a primary outcome variable) suggests that it is not CrM that causes a rise 
in urine production but rather the associated increase in water or fluid intake often 
consumed at the same time with CrM, typically in conjunction with exercise training. 
Kreider et al. [151] examined 98 Division IA college football players’ urine output during 
a 21-month period of CrM. Compared to placebo, CrM resulted in similar urine outcome 
variables over time. Increased fluid intake, often encouraged alongside CrM, is likely the 
main reason urine production increased. When more fluids are consumed, the kidneys 
upregulate GFR activity to maintain the body’s fluid and electrolyte balance by filtering 
the excess water out of the bloodstream and into the urine [150]. This process is regulated 
by antidiuretic hormone (ADH), which controls the amount of water reabsorbed by the 
kidneys. Higher fluid intake reduces ADH levels, leading to less water reabsorption and 
consequently, increased urine production. This physiological response tightly regulates 
fluid homeostasis, resulting in more frequent urination. It is important to note that 
creatine is efficiently metabolized by the body, with daily intake and excretion being 
approximately equal [152]. Therefore, the idea that CrM itself leads to a significant 
increase in urine production is unfounded and not supported by scientific evidence.

In summary, while CrM may result in higher fluid intake, leading to increased urine 
production, CrM itself does not independently drive changes in urine volume.

11. Does CrM influence blood pressure?

There has been speculation that CrM might increase blood pressure due to a number of 
factors, including fluid retention within cells and increased stress on kidney function. In 
addition, creatine kinase, the enzyme involved in the process by which PCr re- 
phosphorylates ADP to ATP is high in resistance arteries and may be involved with 
vasoconstriction to increase blood pressure [153]. Serum creatine kinase, as a surrogate 
for tissue creatine kinase, is associated with increased blood pressure [153]; however, the 
concentration of this enzyme in blood is not a direct indication of creatine concentration 
in tissue, but rather an indication of plasma membrane damage (majority coming from 
skeletal muscle). Despite these concerns, relatively high-dose (i.e. 10–20 grams/day) but 
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short term (i.e. 5–31 days) CrM in young, healthy males and females did not affect blood 
pressure [154–156]. Most importantly, a systematic review of clinical populations (i.e. 
patients with heart failure, ischemic heart disease, or myocardial infarction) found no 
impact of CrM (again at relatively high doses, i.e. 20 grams/day for up to 6 weeks) on 
blood pressure [157]. In a recent two-year intervention (which focused on changes in 
bone), postmenopausal women (mean age ~59 years) were randomized to receive 
a relatively high dose of CrM (0.14 grams/kg/day) or placebo [158] and participants at 
one of the research sites had blood pressure measured before and after the intervention. 
For those who completed the intervention (n = 60 on CrM, n = 52 on placebo) there was 
no difference between groups for changes in either systolic (CrM = 121 ± 15 to 124 ±  
11 mmHg; placebo = 116 ± 13 to 121 ± 15 mmHg; p = 0.34) or diastolic (CrM = 77 ± 8 to 76  
± 7 mmHg; placebo = 75 ± 8 to 76 ± 9 mmHg; p = 0.65) blood pressure. Studies of CrM in 
people who were hypertensive at baseline are missing from the literature; however, one 
study in spontaneously hypertensive rats found no effect of CrM (5 grams/kg/day for 9  
weeks) on blood pressure [159]. Finally, there is some research indicating CrM might be 
effective for reducing the blood pressure response to a resistance-training session: Three 
weeks of CrM (10 grams/day) in young males reduced the acute blood pressure response 
to resistance-training compared to placebo [160]. It was speculated that an improvement 
in anaerobic metabolism with CrM would attenuate production of metabolic by-products 
such as lactate or ammonia, which might stimulate muscle metaboreceptors involved in 
activation of the sympathetic nervous system [160].

In summary, there is no evidence that short-term or chronic CrM adversely affects 
blood pressure.

12. Is CrM safe to consume during pregnancy?

Regulation of creatine metabolism may be important in all aspects of reproduction, from 
fertilization to pregnancy and fetal growth [161–167], labor and birth [168], breastfeeding 
[169], and early childhood development [170]. This increasing body of research is raising 
questions about optimal dietary creatine intake during pregnancy and whether CrM may 
benefit certain populations [171,172], including infants born preterm [173]. In particular, 
studies are ongoing to explore the potential of CrM during pregnancy to increase fetal 
creatine reserves and support energy homeostasis during periods of mild to severe 
hypoxia-ischemia, potentially preventing major complications like perinatal hypoxic- 
ischemic encephalopathy (HIE). Initial findings from pre-clinical models have been pro
mising [174]. An interesting aspect of CrM for improving newborn outcomes is its use as 
a prophylactic agent in high-risk pregnancies [175]. This approach addresses the chal
lenge of identifying pregnancies at risk of acute hypoxic events [176]. However, it does 
raise questions about potentially exposing healthy fetuses to high creatine concentra
tions throughout the antenatal period [177].

Generating data on the safety of CrM during pregnancy, in addition to establishing its 
efficacy, has been integrated into the design of recent pre-clinical animal studies. In the 
spiny mouse model of intrapartum hypoxia, where pregnant dams were fed a 5% w/w CrM 
from mid-gestation until delivery (a period of 18 days) [178], offspring exposed to increased 
levels of creatine in utero were followed through to adulthood with no reported impact on 
body growth, renal, skeletal muscle or diaphragm structure or function [179–181]. In 
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addition, a study conducted in non-pregnant and pregnant spiny mice focused on the 
impact of CrM on maternal creatine homeostasis, body composition, capacity for de novo 
creatine synthesis and renal excretory function found no sustained negative impacts on 
maternal physiology [182]. Comprehensive data on fetal well-being has also been reported 
from chronically instrumented fetal sheep supplemented with a continuous intravenous 
infusion of 6 mg·kg−1·h−1 of CrM for 13 days at the cerebral development equivalent 
gestational age of 34 to 36 weeks of human pregnancy. The 5-fold increased circulating 
creatine concentrations achieved with direct fetal supplementation had no impact on 
cardiovascular or systemic arterial blood gas parameters throughout the supplementation 
period and no change in fetal body or organ weights at postmortem [183]. This CrM regime 
also did not negatively impact cerebral interstitial concentrations of lactate, glutamate or 
hydroxy free radicals in the near-term fetal brain [184]. At a cellular level, in utero creatine 
exposure was linked to transcriptional changes in genes associated with anti-apoptotic 
pathways and mitogenesis, particularly in the fetal hippocampus, but this was not directly 
linked to any changes in cell death, mitochondrial respiration or mitochondrial complex 
density [185]. Changes in genes associated with innate immunity in the cortical gray matter 
and striatum have also been noted, including an upregulation of major inflammatory 
mediators including IL-6, IL-1β, TNFα, and prostaglandin synthase. Whether these changes 
indicate CrM produces a pro-inflammatory environment is yet to be ascertained. However, 
the same study did not observe increases in the presence of microglia and astrocytes nor 
increased markers of oxidative stress at a protein level [185,186]. Of note, increased myelin 
basic protein immuno-positive area coverage in the subcortical white matter observed in 
fetal sheep indicate a potential for in utero CrM to enhance or speed up myelination in the 
developing brain. A similar finding has been reported in male rat pups born to dams 
supplemented with 1% CrM in their drinking water for the final 10 days of pregnancy. 
Electrophysiological recordings from hippocampal pyramidal neurons of these rat pups at 
postnatal day 14–21 displayed increased excitability and enhanced long-term potentiation, 
despite increased creatine exposure being ceased at birth [187]. In follow-up assessments, 
these neurological changes observed in young rats persisted, suggesting improved synap
tic plasticity into adulthood [188]. While the subtle changes observed in the brain following 
in utero creatine exposure to date do not suggest a negative impact on offspring welfare or 
cognitive abilities, it remains important to thoroughly characterize any shift in neurodeve
lopment brought about by CrM during pregnancy with continued pre-clinical evaluation.

The translation of CrM as a pregnancy intervention is still in its infancy, with initial 
pharmacokinetic and tolerability studies underway (ACTRN:12620001373965). As such, 
there is currently no direct evidence available from well-designed and executed rando
mized controlled clinical trials (RCTs) on the safety and tolerability of CrM during human 
pregnancy. However, a recent systematic review and meta-analysis of CrM in female-only 
populations of reproductive age assessed the safety outcomes [189]. This study reviewed 
the data from 29 studies that collectively consented 951 participants ranging from 16 to 
67 years of age that received 1–30 grams of CrM per day for between 4 days to 365 days. 
No deaths or serious adverse events (defined as any outcome that causes life-threatening 
events; requirement for hospitalization or prolongation of existing hospitalization; persis
tent or significant disability; or any events considered medically important) were reported 
in any of the trials reviewed. When stratified by dosing regimens, meta-analyses con
firmed that there were also no significant differences in minor adverse events between 
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CrM and control groups, including gastrointestinal events, blood and urine biomarkers of 
renal and hepatic function, or weight gain.

In summary, preliminary research involving animal models suggest that CrM during 
pregnancy does not negatively affect the mother or offspring. However, there is 
currently no direct evidence available from well-designed and executed randomized 
controlled clinical trials on the safety and tolerability of CrM during human pregnancy.

13. Does CrM enhance performance in adolescents?

In conjunction with the substantial amount of evidence that supports the performance- 
enhancing abilities of CrM for various adult populations [8,190,191], the body of scientific 
literature regarding the benefits of CrM for children and adolescents continues to grow 
(Table 1). To date, many of the studies involving adolescents have focused on swimming 
and soccer performance [202,203]. Most studies employed a short-term (4–7 days) CrM 
loading dose of 20–25 grams/day, followed by a CrM maintenance dose of 5 grams/day. 
Grindstaff et al. [193] were one of the first to evaluate the effects of CrM on sport-specific 
performance in adolescent male swimmers and reported significant improvements in 
sprint swimming performance after nine days of CrM at a daily dose of 21 grams. In 
a similar study, Juhasz et al. [194] reported significant improvements in power output and 
100 m sprint swimming performance following CrM (20 grams for 5 days) in elite junior 
male swimmers.

For soccer-specific performance, Mohebbi et al. [198] reported improvements in repeat 
sprint performance and dribbling performance after seven days of CrM supplementation 
(20 grams/day)) in adolescent male soccer players. Similarly, Ostojic et al. [199] reported 
improvements in dribble test and endurance times along with improvements in sprint 
power and countermovement jump performance following seven days of CrM (30 grams/ 
day) in adolescent male soccer players.

Research has also explored alternative applications of CrM beyond direct measures of 
sports performance. For example, Ojeda et al. [201] recently reported that CrM (0.3 grams/ 
kg/day for 14 days) led to an improved ability to maintain muscle power following the 
induction of intrasession fatigue in young (17 years of age) male soccer players. 
Additionally, Juhasz et al. [204] observed greater improvements in segmental lean mass 
and plantar flexion torque following limb immobilization in adolescent swimmers reco
vering from tendon overuse injuries after CrM (20 grams/day for 5 days followed by 5 
grams/day for 37 days).

In summary, CrM can improve measures of sports-specific activities as well as 
similar indices of physical performance such as power or sprint speed in adolescents. 
Research in female adolescent athlete populations is significantly lacking. Long-term 
RCT’s designed to examine changes in training adaptations in adolescent populations 
from CrM are needed.

14. Does CrM adversely affect male fertility?

The notion of CrM having detrimental effects on male fertility seems to be propagated by 
dubious sources. This speculation often stems from studies involving multi-component 
bodybuilding supplements that contain various ingredients, including anabolic steroids, 
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which can potentially impair sperm function [205,206]. Furthermore, anecdotal claims in 
public media suggest that CrM may induce dehydration, leading to impaired sperm 
production and function, or elevate testosterone levels, which could negatively impact 
male fertility. However, contrary to these claims, CrM actually improves water retention 
[207], and the majority of studies indicate that it has no effect on testosterone levels (for 
an in-depth review, see Antonio et al., [10]). Hence, the anecdotal claims regarding the 
harmful effects of CrM on male fertility lack validity.

Creatine may play a significant role in sperm viability. Semen, being a high-energy- 
demanding fluid, exhibits relatively high creatine content in both spermatozoa and 
seminal plasma (up to 15 mm) [208], comparable to levels found in other energy- 
demanding cells. The testes express a unique tissue-specific membrane transport protein 
for creatine (CT2) [209], underscoring the importance of creatine utilization for male 
reproductive bioenergetics. Several preclinical and clinical studies have demonstrated 
that low semen creatine levels are associated with reduced sperm quality (for a detailed 
review, see Ostojic et al., [210]). This suggests that restoring normal creatine homeostasis 
in spermatozoa, possibly through CrM, could be a potential target for improving sperm 
quality.

Preliminary studies indicate that creatine may enhance human sperm viability. 
Incubating semen or migrated sperm fractions with creatine phosphate has shown to 
significantly improve sperm motility and velocity in normospermic donors [161]. These 
effects occur rapidly, with full improvements in sperm velocity and motility achieved 
within one minute. The authors suggest that adding creatine phosphate to insemination 
media could enhance the fertilizing capacity of sperm during in vitro fertilization or 
gamete intrafallopian transfer procedures. Animal studies support these findings, demon
strating the beneficial effects of creatine and creatine analogs on sperm capacitation in 
mice [211], fertilization ability in boars [212], and semen quality and fertility in broiler 
breeder roosters [213]. However, no effects of creatine on in vitro capacitation-related 
events were found in frozen equine sperm [214]. An intriguing cross-sectional study 
suggests that semen concentration and total sperm count may tend to be higher in 
healthy men who currently consume protein supplements (with 44% reporting CrM use or 
creatine-protein combinations) compared to former users and never users [215]. 
Currently, there are no human studies available investigating the effects of CrM on indices 
of male fertility in normospermic and/or oligospermic men.

In summary, existing evidence does not suggest that CrM negatively impacts male 
fertility. In fact, preliminary findings indicate that exposure to creatine may improve 
human sperm motility and velocity in normospermic men under in vitro conditions.

15. Does the brain require a higher dose of CrM than skeletal muscle?

The optimal dose and requirements for CrM may differ between skeletal muscle and brain 
tissue [216,217]. There is a well-established body of literature examining the effects of 
various dosages of CrM on skeletal muscle uptake and retention (for review see [140,216]). 
Pioneering work in the early 1990’s by Drs. Roger Harris and Eric Hultman demonstrated 
that ingesting 20 grams/day of CrM separated into four equal doses was able to elevate 
intramuscular creatine stores ~ 18% within 6 days, which was maintained with 2 grams/ 
day [3,218]. Furthermore, a much lower dose of CrM (3 grams/day) was able to elevate 
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creatine stores to a similar degree after 28 days of supplementation compared to the CrM 
loading phase (20 grams/day for 6 days). Importantly, CrM elevates plasma creatine (5 
gram dose = >500 mmol/L increase), which can then be taken up into energetically 
demanding tissues (e.g. muscle and brain) against a concentration gradient via a sodium- 
chloride creatine-specific transporter protein (SLC6A8) [40,116]. Creatine transport into 
cells is both sodium and insulin-dependent [219]. Several studies from Dr. Paul 
Greenhaff’s laboratory have shown that insulin augments creatine uptake into muscle 
and that CrM co-ingestion with either carbohydrates or protein (which both are insulino
genic) results in greater intramuscular creatine retention in the short-term [49,54,219].

In contrast to skeletal muscle, there is less evidence and understanding regarding 
the optimal CrM dosing protocol to increase brain creatine levels [216]. A few studies 
have shown that high-dose CrM (acute ingestion of 0.35 grams/kg; ≥20 grams/day or 
0.3 grams/kg/day for at least 7 days) or lower-dose CrM (4–5 grams/day for several 
months) can increase total brain creatine levels in young and older adults [220–224], 
while others have found no effect after 7 days with ~ 20 grams/day [225]. 
Importantly, CrM increases brain creatine levels by ~ 5–10% compared to a ~ 20–40% 
increase in skeletal muscle [217,226]. These divergent responses may be associated 
with the endogenous synthesis of creatine in the brain, lack of creatine transport 
kinetics at the blood-brain barrier, and dosage and duration of CrM [217]. Skeletal 
muscle relies solely on exogenous creatine (i.e. dietary creatine and creatine synthe
sized in the liver), while the brain has the ability for de novo synthesis. The synthetic 
pathway involves three amino acids: arginine, glycine, and methionine and two 
enzymes: L-arginine: glycine amidinotransferase (AGAT) and guanidinoacetate 
methyltransferase (GAMT). The brain appears to rely on its own creatine synthesis 
under normal resting conditions. For example, CrM does not alter brain energetics or 
cognition in young, healthy adults, even with higher doses (e.g. 20 grams/day for 
6 weeks) [227]. Further, the capacity to uptake creatine from the blood appears to be 
limited due to a small number, or lack thereof, of SLC6A8 transporters at the blood- 
brain barrier [228]. There is speculation that the brain does not necessarily rely on 
circulating creatine to maintain homeostasis, therefore higher doses of CrM over 
longer periods might be required to elevate brain creatine levels. However, this 
concept remains to be elucidated as previous creatine trials fail to demonstrate 
a dose and/or duration response relationship. For example, adolescent females on 
medication for major depressive disorder supplemented with either 2, 4, or 10 
grams/day of CrM or placebo for 8 weeks [229]. Mean frontal lobe phosphocreatine 
increased by 4.6, 4.1, and 9.1% in the 2, 4, and 10 grams/day of CrM groups, 
respectively. Since there were no differences in the 2 and 4 grams/day of CrM 
groups, there does not appear to be any clear linear response, however the higher 
dose CrM group (10 grams/day) experienced twice the increase in brain creatine 
stores. Furthermore, Dechent et al. [221] had participants ingest 20 grams/day of CrM 
for 4 weeks and monitored brain creatine levels on a weekly basis. Results showed 
that total brain creatine levels increased early in the CrM period, decreased in week 
3, and then increased again in week 4. Solis et al. [225] found that CrM (0.3 grams/ 
kg/day for 7 days) did not alter brain creatine levels in young or older adults. Overall, 
these findings are challenging to interpret, but highlight that there is no clear dose- 
time relationship regarding CrM and brain creatine levels.
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In summary, it is unclear whether the brain requires higher doses of CrM compared 
to skeletal muscle. It is well-established that a wide range of CrM protocols (20 grams/ 
day with and without a maintenance dose, 3–5 grams/day) can increase skeletal 
muscle creatine stores. There is some evidence that different CrM dosing protocols 
(acute ingestion of 0.35 grams/kg; ≥20 grams/day or 0.3 grams/kg/day for at least 7  
days) or lower-dose CrM (4–5 grams/day for several months) can increase brain 
creatine levels. However, a CrM dose and time-response relationship (if any) remains 
to be determined.

16. Can CrM attenuate symptoms of sleep deprivation?

Lack of sleep adversely affects cognitive function, motor skills, and mood, partly because 
of reduced creatine levels in the brain. Hence, it has been posited that CrM could alleviate 
these detrimental effects of sleep deprivation [220,226]. Nevertheless, there is a scarcity of 
data on the effects of CrM on sleep. McMorris et al. [230] assessed the effects of CrM, sleep 
deprivation, and mild exercise on cognitive and psychomotor performance, mood, and 
plasma concentrations of catecholamines and cortisol. In this double-blind, placebo- 
controlled trial, research participants (21 years of age) consumed 5 grams of CrM or 
placebo four times daily for one week. Participants underwent various tests including 
random movement generation (RMG), verbal and spatial recall, choice reaction time, static 
balance, and mood assessment at baseline (0 h) and after 6, 12, and 24 hours of sleep 
deprivation, interspersed with intermittent exercise. Blood samples were collected at 0 
and 24 hours to measure plasma concentrations of catecholamines and cortisol. Results 
revealed that after 24 hours, the CrM group exhibited significantly less deterioration in 
RMG, choice reaction time, balance, and mood compared to baseline. However, there 
were no significant differences between groups in terms of plasma catecholamines and 
cortisol concentrations. In a subsequent study by McMorris et al. [231], they discovered 
that in the context of moderate-intensity exercise during sleep deprivation, CrM (i.e. 20 
grams/day for 7 days) influenced the performance of intricate central executive tasks 
during 36 hours of sleep deprivation in young males (21 years of age). Furthermore, 
Cook et al. [232] explored how sleep deprivation, with or without the immediate intake 
of caffeine or CrM, affected performance during a repetitive rugby passing skill [232]. Ten 
top-tier rugby athletes (21 years of age) underwent 10 trials of a basic rugby passing skill 
test (i.e. 20 repetitions per trial) after becoming accustomed to the task. During 5 trials, 
participants slept between 7–9 hours, while during the other 5 trials, they experienced 
sleep deprivation, sleeping only 3–5 hours. Prior to each trial, participants received either: 
placebo pills, 50 or 100 mg/kg of CrM, or 1 or 5 mg/kg of caffeine. Saliva samples were 
collected before each trial and analyzed for levels of salivary free cortisol and testosterone. 
The CrM dose would be equivalent to 3.75–7.50 grams of CrM for a 75-kilogram individual. 
Sleep deprivation under the placebo condition led to a substantial decline in skill 
performance accuracy on both the dominant and non-dominant passing sides. 
However, there was no decline in skill performance observed with caffeine doses of 1 or 
5 mg/kg, and there was no significant difference in the effects between these two doses. 
Similarly, no impairment was observed with CrM at doses of 50 or 100 mg/kg, and there 
was no significant difference in the performance effects between these two doses. 
Salivary testosterone levels were unaffected by sleep deprivation. Thus, CrM appears to 
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ameliorate the effects of sleep deprivation [232]. In an intriguing investigation by Gordji- 
Nejad et al. [222], participants (23 years of age) were orally administered a high single 
dose of CrM (0.35 g/kg) while performing cognitive tests during 21 hours of sleep depri
vation. Results showed that a high single dose of CrM can partially reverse metabolic 
alterations and fatigue-related cognitive deterioration [222]. In contrast, Rawson et al. 
[233] found no beneficial effects from CrM (0.03 grams/kg/day) on measures of cognitive 
processing in young adults (21 years of age) who were not sleep-deprived [233].

In summary, preliminary evidence suggests that CrM may have a positive effect on 
cognitive processing under conditions of sleep deprivation in young adults. However, 
there is no evidence that creatine supplementation improves cognition under condi
tions of adequate sleep.

17. Will CrM reduce the severity of or improve recovery from traumatic 
brain injury?

It is becoming more widely known that increasing brain creatine through CrM improves 
aspects of brain health, such as cognitive processing, under both resting and especially 
under stressed (e.g. disease, sleep deprivation, etc.) conditions (reviewed in 
[217,220,234]). Traumatic brain injury (TBI) represents a unique challenge to brain health, 
but there is some evidence that CrM may be of benefit. Following TBI, there is increased 
energy need coupled with decreased energy availability, including reduced brain creatine 
[235,236], which creates a cellular energy crisis. In addition to the potential of CrM to help 
mitigate the energy drain created by brain injury, CrM may positively impact other 
features of TBI including: membrane disruption leading to calcium influx, nerve damage, 
mitochondrial dysfunction, oxidative stress, and inflammation (reviewed in [237]).

Animal models have been used to examine the ability of CrM to serve as a prophylactic 
nutrient to moderate the damage of TBI. Sullivan et al. [238] reported that 3 or 5 days of 
prophylactic creatine ingestion (3 mg/gram/day) reduced cortical damage 21% and 36%, 
respectively, in mice following an experimentally induced TBI. Similarly, rats fed 
a creatine-enriched diet prior to experimentally induced TBI demonstrated a 50% reduc
tion in cortical damage. It is, however, difficult to study the preventative effects of CrM on 
TBI in humans, as concussing research volunteers is unethical and identifying concussed 
volunteers cannot happen until after the injury. The effects of post-brain injury CrM in 
children have been studied by Sakellaris et al. [239–241]. Reportedly, 6 months of CrM (0.4 
grams/kg/day) in children and adolescents (n = 39: 1–18 years of age) with a TBI revealed 
many benefits, including decreased duration of post-traumatic amnesia, intubation time, 
and intensive care unit stay; and improved disability, recovery, self-care, communication, 
locomotion, sociability, personality and behavior, and neuro-physical and cognitive func
tion [239,240]. CrM improved post-traumatic headaches, dizziness and fatigue, commonly 
reported as lingering problems of TBI. Dysregulation in brain energy metabolism follow
ing TBI needs further study, as TBI-related changes in brain metabolites are influenced by 
brain region and time [242]. Compelling data from Alosco and colleagues [243] showed 
that persistent, longer-term changes to cognitive, behavioral, and mood symptoms are 
related to reduced brain creatine in retired players from the National Football League 
(aged 40 to 69 years) who had experienced repetitive head impacts years earlier during 
their career. Furthermore, several RCT’s designed to investigate the potential benefits of 
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CrM on recovery from TBI are currently underway (see [244], Clinicaltrials.gov ID 
NCT06208813, NCT05562232, NCT0558906). Additionally, a recent review by Ostojic 
et al. (20024) found that increased dietary creatine intake was associated with reduced 
circulating levels of neurofilament light chain levels, which is a common marker of 
neuronal damage in humans. Therefore, dietary creatine intake may exert protective 
effects of future neuronal injury [245].

In summary, the small body of research to date involving animal and patient 
populations suggest that CrM can potentially reduce severity of and/or improve 
recovery from TBI. In lieu of data from large RCT’s, for best practice, the totality of 
evidence suggests that CrM for individuals at high-risk of TBI, such as athletes and 
military personnel, is sensible.

18. Conclusions

Based on our scientific evaluation of the literature, we conclude that:

(1) CrM may provide benefits to skeletal muscle without exercise. Populations with 
lower baseline creatine levels, such as vegans and vegetarians, may experience 
a greater response to CrM.

(2) The timing of CrM does not appear to be a limiting factor on the ergogenic effects 
of exercise training adaptations. Consistent CrM during an exercise training 
program is likely the most important variable.

(3) The co-ingestion of CrM with other compounds (i.e. carbohydrates, protein) may 
accelerate the increase in muscle creatine levels and improve exercise 
performance.

(4) Short-term creatine and caffeine ingestion (<5 mg/kg/day) likely do not cause 
opposing effects. Consider acute caffeine intake after CrM loading for potential 
performance benefits. Chronic caffeine use, combined with CrM does not result in 
greater exercise effects. This combined strategy may increase gastrointestinal 
distress and may indirectly interfere with performance.

(5) CrM does not increase the rates of muscle protein synthesis. However, there is 
some existing evidence to support the anti-catabolic effects of CrM in men).

(6) CrM changes some inflammatory markers following long-duration aerobic type 
exercise.

(7) CrM has the potential to enhance the recovery following injury, surgery or 
immobilization.

(8) Evidence-based research does not support that CrM in humans (3–5 grams/day) 
increases the formation of carcinogenic compounds or cancer risk (primary or 
metastasis). CrM is likely to be beneficial to help protect and/or recover from the 
skeletal muscle and body composition issues associated with cancer per se and/or 
the effects of chemotherapy.

(9) CrM does not increase urine production.
(10) There is no evidence that CrM adversely affects blood pressure parameters.
(11) Animal research suggests that CrM during pregnancy does not negatively impact 

the mother or offspring. However, there are no well-designed or executed 
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randomized controlled clinical trials on the safety and tolerability of CrM during 
human pregnancy.

(12) In adolescents, CrM can improve measures of sports-specific activities in addition 
to improving power or sprint speed in adolescents.

(13) CrM does not negatively impact male fertility.
(14) It is unclear whether the brain requires more CrM than skeletal muscle to increase 

creatine levels.
(15) CrM may positively affect cognition and memory during periods of sleep depriva

tion in young adults, but not for those with adequate sleep.
(16) CrM has the potential to reduce the severity of and/or improve recovery from TBI.
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