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Abstract

Mitochondria are multifaceted organelles with several life-sustaining func-
tions beyond energy transformation, including cell signaling, calcium
homeostasis, hormone synthesis, programmed cell death (apoptosis), and
others. A defining aspect of these dynamic organelles is their remarkable
plasticity, which allows them to sense, respond, and adapt to various stres-
sors. In particular, it is well-established that the stress of exercise provides
a powerful stimulus that can trigger transient or enduring changes to mito-
chondrial molecular features, activities, integrated functions, behaviors, and
cell-dependent mitochondrial phenotypes. Evidence documenting themany
beneficial mitochondrial adaptations to exercise has led to the notion of
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exercise as a mitochondrial medicine. However, as with other medicines, it is important to un-
derstand the optimal prescription (i.e., type, dose, frequency, duration). In this review, we build
on a systematic biological framework that distinguishes between domains of mitochondrial bi-
ology to critically evaluate how different exercise prescription variables influence mitochondrial
adaptations to training.

INTRODUCTION

The concept of exercise as medicine has its roots in antiquity. More than 2,000 years ago, Hip-
pocrates wrote that “walking is man’s best medicine,” and physicians from various ancient cultures
prescribed exercise to enhance health and treat multiple diseases. Evidence supporting the many
beneficial effects of regular exercise continues to grow (1).Exercise is one of themost cost-effective
approaches to manage and prevent numerous diseases (2), has greater therapeutic value than many
drugs, and is also a medicine with few side effects (3). The magnitude of the pleiotropic health
benefits associated with regular exercise is influenced by factors including the frequency, intensity,
and type of exercise performed.

The pioneering work of John Holloszy (4) [and earlier research by Olga Chepinoga (5)] es-
tablished that exercise is also a mitochondrial medicine able to alter the content and function of
mitochondria—a family of life-sustaining, multifaceted organelles with their own DNA that pop-
ulate every nucleated cell in mammals. These organelles transform energy from breathed oxygen
and ingested nutrients, powering activities and communication throughout the body. Mitochon-
dria are the ultimate source of respiration and possibly the reason why animals evolved lungs and
cardiovascular systems to supply mitochondria with life-giving oxygen (6).

Because exercise requires energy in the form of ATP, and most ATP is provided by mitochon-
dria, adaptive mechanisms exist to couple regular exercise with specific mitochondrial adaptations
within tissues.This can be considered a form of predictive regulation, or allostasis (7), in which ex-
ercised tissues anticipate future energy requirements and mount commensurate adaptations. As a
result, exercise stimulates mitochondrial biogenesis (i.e., the synthesis of new mitochondrial com-
ponents) in skeletal muscle (and other tissues and organs) (8), and many of the health benefits of
exercise are believed to originate from subsequent changes in mitochondria (9, 10). However, as
with other therapies, it is important to understand how the dose or prescription of exercise affects
mitochondrial adaptations important for health.

MITOCHONDRIAL CHARACTERISTICS

Mitochondria are often described as the energy-producing powerhouses of the cell, an analogy
first coined in 1957 (11). However, this powerhouse of the cell analogy does not capture the mul-
tifunctional nature of these organelles (12). Unlike powerhouses, whose sole function is energy
transformation, mitochondria have many functions; these include generating cellular energy,
cell signaling, calcium homeostasis, hormone synthesis, programmed cell death (apoptosis), and
many other functions (13). Although the only way in which powerhouses can be dysfunctional is
by exhibiting diminished energy production capacity, the dozens of mitochondrial functions can
malfunction in different ways. For this reason, the terms mitochondrial function and mitochon-
drial dysfunction1 are misleading misnomers that fail to capture the complexity of mitochondrial

1For example, does mitochondrial dysfunction mean a decrease in ATP synthesis rate or maximal respiratory
capacity, a metabolic shift from beta-oxidation to glutamine oxidation, a decrease in oxidative phosphorylation
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MitoVD:
mitochondrial volume
density

FIB-SEM: focused
ion beam scanning
electron microscopy

TEM: transmission
electron microscopy

CS: citrate synthase

OxPhos: oxidative
phosphorylation

MitoPS:
mitochondrial protein
synthesis

biology (12). Therefore, in this review we deliberately avoid using these terms, even when used
in cited references. Instead, to better capture the complexity of mitochondrial biology, we have
described the effects of exercise on specific cell-dependent mitochondrial phenotypes, features,
activities, functions, and behaviors [as previously described (12) and illustrated in Figure 1].

Cell-Dependent Phenotypes

The most common mitochondrial measure in exercise studies is mitochondrial content (some-
times referred to as mitochondrial mass, fractional area, or volume density, MitoVD), reflecting
the proportion of the muscle volume occupied by mitochondria. As the mitochondrial population
exists in a three-dimensional (3D) network, high-resolution 3D confocal imaging or focused ion
beam scanning electron microscopy (FIB-SEM) are more direct approaches to quantify MitoVD.
However, these techniques have not been used in the context of exercising humans, and two-
dimensional imaging using transmission electron microscopy (TEM) is usually regarded as the
reference standard for measuring MitoVD. Because TEM is not available in many laboratories,
surrogate measures (or biomarkers) of mitochondrial content are more often used in exercise
training studies. Of these, cardiolipin content and the activity of citrate synthase (CS; an en-
zyme exclusively located in the mitochondria) were most strongly associated with MitoVD as
measured by TEM; mitochondrial DNA (mtDNA) was a poor predictor of mitochondrial con-
tent (14). Nonetheless, a limitation with all biomarkers is that, despite the relatively strong
correlations with mitochondrial content reported in cross-sectional studies, the validity of these
biomarkers to assess training-induced changes in mitochondrial content has been questioned
(15, 16).

Features

Mitochondrial features refer to the intrinsic building blocks of mitochondria that can be assessed
with quantifiablemetrics. In the context of exercise training, they have sometimes been assessed via
static measures of mitochondrial morphology (e.g., cristae density, complexity, size, length, circu-
larity).Whilemitochondrial features also include the abundance of specificmitochondrial proteins
or protein complexes, there was insufficient space in this review to adequately discuss the influence
of exercise prescription on these features. Changes in mitochondrial features are not always sto-
ichiometrically linked to the overall change in mitochondrial content (17), and training-induced
changes in some mitochondrial features (e.g., cristae density) have been proposed to contribute
to altered mitochondrial respiratory function (18).

Activities

Molecular and morphological mitochondrial features combine and contribute to mitochondrial
activities—dynamic processes that include the enzyme activities of single proteins (e.g., CS) or
multiprotein complexes (e.g., the isolated enzymatic activities of the OxPhos complexes). As CS
activity is more often used as a biomarker of mitochondrial content, we focus on training-induced
changes in the enzymatic activities of the OxPhos complexes in this review. Another important
activity is mitochondrial protein synthesis (MitoPS), which has been suggested as the best measure
of mitochondrial biogenesis (19). The rate of MitoPS is typically quantified via the infusion of
stable isotope–labeled amino acid tracers or the oral administration of the stable isotope deuterium

(OxPhos) subunit abundance or supercomplex assembly, a change in reactive oxygen species production, re-
duced mitochondrial proteostasis, a compensatory increase in mitochondrial DNA copy number, an increased
cytoplasmic citrate export, or a change in motility or fusion dynamics among perinuclear mitochondria?
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Figure 1

Measurements across the domains of mitochondrial biology reviewed in this article. We build on a published systematic biological
framework, which distinguishes five domains of mitochondrial biology: cell-dependent phenotypes (e.g., mitochondrial mass or
content), features (molecular components or building blocks, generally measurable from frozen cellular material), activities (the
interaction of multiple features, resulting in specific enzymatic activities or intrinsic properties of mitochondria), functions (the
combination of several activities, resulting in the transformation of inputs into outputs at the organelle level), and behaviors (a series of
activities and functions that often involve the organelle as a whole, rather than individual features). A more detailed description of these
domains of mitochondrial biology is provided elsewhere (12). Abbreviations: I–IV, complexes I–IV; CoQ, coenzyme Q10; Cyt C,
cytochrome C; DRP1, dynamin-related protein 1; ETC, electron transport chain; FIS1, mitochondrial fission 1; MFN1/2,
mitofusin-1/2; mtDNA, mitochondrial DNA; OPA1, optic atrophy 1 (OPA1 mitochondrial dynamin-like GTPase); OxPhos, oxidative
phosphorylation; PCr, phosphocreatine; Pi, inorganic phosphate; TCA, tricarboxylic acid. Figure adapted from images created in
BioRender; Bishop D. 2025. https://BioRender.com/o51r251.
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oxide (heavy water); these two approaches are comprehensively reviewed elsewhere (20). MitoPS
is often assessed in mitochondria-enriched fractions, but it can also be estimated from changes in
protein synthesis in a sarcoplasmic fraction, which is also enriched for mitochondria (21); both of
these fractions will also contain other myofibrillar proteins (17) and provide only an estimate of
MitoPS.

Functions

Mitochondrial functions generally involve multiple activities contributing to the conversion of an
input into an output. In the context of mitochondria and training, the function most frequently as-
sessed is energy transformation. This function requires mitochondria to convert macronutrients,
or their derivatives/metabolites, into ATP (energy) via OxPhos. Skeletal muscle mitochondrial
respiratory function can be assessed via several techniques (Figure 1). The rate of oxygen con-
sumption may be determined from either isolated mitochondria (i.e., in vitro) or permeabilized
muscle fibers (i.e., ex vivo), both of which are obtained from skeletal muscle biopsies. Rates
of oxygen consumption determined on permeabilized fibers are typically expressed as mass-
specific mitochondrial respiration (i.e., the rate of oxygen consumption per milligram of tissue) or
mitochondria-specific (intrinsic) mitochondrial respiration (i.e., the rate of oxygen consumption
normalized to a measure of mitochondrial content) (22). Furthermore, 31P magnetic resonance
spectroscopy techniques can determine phosphocreatine recovery rates and estimate mitochon-
drial ATP production rates in vivo. Mitochondrial ATP production rate can also be assessed
in vitro via bioluminescent assays. Although each approach has its advantages and disadvan-
tages, each method can influence the measurement of mitochondrial respiration in different
ways (23), and their varied use throughout the literature compounds the difficulty of identify-
ing and interpreting the effect of different exercise prescriptions on mitochondrial respiratory
function.

Behaviors

Behaviors are best understood as a series of activities and functions that often involve the organelle
as a whole, rather than individual features. Whereas mitochondrial activities and functions com-
monly refer to processes that take place endogenously within a mitochondrion, behaviors typically
involve changes or movement of whole mitochondria and/or interactions with other organellar or
intercellular partners. However, instead of directly visualizing mitochondrial behaviors in vivo (as
is possible in cells and animal tissues), these events are usually assessed indirectly in humans via
changes in regulatory proteins (features) that reflect the propensity or capacity for different behav-
iors.While this approach has provided important information, these techniques are insufficient to
quantify changes in these dynamic processes (24). In the context of exercise, the most commonly
assessed mitochondrial behaviors include indirect markers of the fusion and fission dynamics that
morphologically and functionally reshape the whole organelle. Another behavior critical for the
maintenance of mitochondria is the removal of mitochondria marked for degradation.This occurs
via mitophagy, a form of targeted macroautophagy (hereafter termed autophagy)2 in which dam-
agedmitochondria are targeted, engulfed by a double-membrane vesicle called an autophagosome,
and degraded once fused with a lysosome (25).

2Autophagy, from the Greek auto (self ) and phagein (to eat), is a cellular process by which proteins and or-
ganelles are degraded inside a lysosome (membrane-enclosed organelles that contain enzymes capable of
breaking down biological polymers, such as proteins, nucleic acids, carbohydrates, and lipids).
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V̇O2max: maximal rate
of oxygen
consumption

MLSS: maximal
lactate steady state

CP/CS: critical
power/speed

GXT: graded exercise
test

Ẇmax: the power
associated with
V̇O2max

PRINCIPLES OF EXERCISE PRESCRIPTION

Terminology

As with terms related to mitochondrial biology, concerns have been raised about the inconsistent
use of terminology associated with the prescription of exercise (26, 27). These inconsistencies
have the potential to hamper the establishment of evidence-based recommendations for the opti-
mal prescription of exercise to improve mitochondrial characteristics important for health. In this
review, we have adopted the terminology recently proposed in a joint expert statement from Ex-
ercise and Sport Science Australia (ESSA) and the American College of Sports Medicine (ACSM)
(26).

Definitions of Key Terminology and Concepts

Responses to training are determined by characteristics of the exercise3 stimulus (Figure 2). In
many guidelines, exercise is prescribed using the FITT-VP principle (28):

■ F: Frequency (how often?)
■ I: Intensity (how hard?)
■ T: Time (how long is each exercise session?)
■ T: Type (what kind?)
■ V: Volume (total amount of work performed during a training program)
■ P: Progression (exercise advancement throughout a training program)

There are two main exercise types: cardiorespiratory exercise and resistance exercise. Car-
diorespiratory exercise requires the circulatory and respiratory systems to work together to
support the metabolism of skeletal muscles and other organs to enable sustained exercise. Re-
sistance exercise requires skeletal muscles to exert force to push or pull against resistance with
sufficient effort such that the number of repetitions or duration of contractions is limited due
to neuromuscular fatigue. Exercise frequency simply refers to the number of exercise sessions
completed in a week. Although it is the easiest exercise prescription variable to manipulate, and
a higher exercise frequency has been associated with greater health-related quality-of-life scores
(29) and better glycaemic control (30), very few studies have directly investigated the effects of
exercise frequency on mitochondrial characteristics (for this reason, it is only briefly addressed in
this review). Exercise intensity is more complex and can be prescribed in absolute (e.g., 270 W or
19 km/h) or relative [i.e., as a percentage of an individual’s maximal rate of oxygen consumption
(V̇O2max), e.g., 70% of V̇O2max] terms. Low-intensity cardiorespiratory exercise has been defined
as efforts performed at an intensity below the first metabolic threshold, the first detectable change
in metabolism (31) (Figure 2). Moderate-intensity exercise has been defined as efforts generally
performed at intensities between the first metabolic threshold and the secondmetabolic threshold,
often determined by the maximal lactate steady state (MLSS), the critical power/speed (CP/CS),
or lactate parameters derived from a graded exercise test (GXT)4 (32). More details on the ad-
vantages and disadvantages of each method for determining the second metabolic threshold can
be obtained from recent reviews (33, 34). Exercise performed at an intensity greater than the sec-
ond metabolic threshold but less than the intensity associated with V̇O2max (Ẇmax) is commonly

3Exercise refers to a single session of structured physical activity,whereas exercise training or training indicates
a period of repeated exercise sessions (i.e., over weeks, months, or years).
4GXTs are designed to be increasingly more difficult as they progress (the difficulty may be altered by in-
creasing the speed and/or incline on a treadmill or the resistance on an ergometer); the increments (grades)
typically range from ∼1 min to 5 min.
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HIIT: high-intensity
interval training

SIT: sprint interval
training

Frequency Intensity

Time

Type

MT1: 
LT1/VT/GETBlood

lactate

MT2:
LT2/MLSS

CP/CS  

Work rate

Volume

Resistance exercise

Cardiorespiratory exercise

Progression

= Intensity/load ×
    time/repetitions

Moderate

Moderate

Light

Heavy Severe

Vigorous Very 
vigorous

Extreme

(VO2max)

Inactive Very low Low Moderate High Very
high

Exercise domains:

Physical activity 
terminology:

VO2

VE

Variables for prescribing exercises

Figure 2

Common principles of exercise prescription. Exercise is often prescribed via the manipulation of variables such as frequency, intensity,
time, type, volume, and progression. The MT1 is the first detectable change in metabolism (red dashed arrow), as usually identified by
LT1, VT, or GET. The MT2 is often determined by LT2, MLSS, or CP/CS (red solid arrow). Abbreviations: CP/CS, critical
power/speed; GET, gas exchange threshold [a nonlinear increase in carbon dioxide output (V̇CO2) plotted as a function of oxygen
consumption − V̇O2]; LT1, first increase in blood lactate concentration above baseline; LT2, second lactate threshold; MLSS, maximal
lactate steady state; MT1, first metabolic threshold; MT2, second metabolic threshold; VT, ventilatory threshold (a nonlinear increase
in minute ventilation − V̇E); V̇O2max, maximal rate of oxygen consumption. Figure adapted from images created in BioRender; Bishop
D. 2025. https://BioRender.com/m45y928.

described as high-intensity training (often in the form of high-intensity interval training, HIIT).
Very-high-intensity training is characterized by efforts performed at intensities equal to or greater
than Ẇmax and includes sprint interval training (SIT). Exercise time is the duration (seconds,
minutes, or hours) of one continuous bout or multiple bouts of exercise. For this review, training
volume5 has been defined as the total amount of work performed during training [i.e., the product

5In some articles, training volume is calculated as exercise session duration × training frequency (for
cardiorespiratory exercise) or total number of repetitions (for resistance exercise).
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IMF: intermyofibrillar
mitochondria

SS: subsarcolemmal
mitochondria

of exercise intensity and exercise time for cardiorespiratory exercises (35) or the amount of weight
used multiplied by the total number of repetitions performed for resistance exercises (36)]; this
is sometimes referred to as training load or volume load in the literature. Finally, it is well estab-
lished that there is a reduced adaptive response when the same exercise session is repeated (37, 38).
Progression, therefore, refers to a gradual increase in the exercise stress (e.g., via increases in the
frequency, intensity, and time of exercise) in an attempt to maintain the stimulus for adaptation.

MITOCHONDRIAL ADAPTATIONS TO EXERCISE TRAINING

Cell-Dependent Phenotypes (i.e., Mitochondrial Content) and Training

Since the pioneering work of John Holloszy in the 1960s, exercise training has been known to
increase mitochondrial content (as assessed by the total protein content of the mitochondria in
rodent skeletal muscle) (4). Subsequent research usingTEMhas confirmed these results in healthy
young men and women (16, 39–47), the elderly (48), and those with lifestyle diseases (49, 50).
Training-induced increases in MitoVD range from ∼10% (51) to ∼90% (50), with as little as six
exercise sessions sufficient to increase this parameter (41).The variablemagnitude for the reported
changes in MitoVD with training has been hypothesized to be attributable to the diverse training
protocols used in the different studies (52).

While this topic continues to be debated (53, 54), there is evidence that total training volume
is an important determinant of changes in MitoVD (Figure 3a). A study comparing five different
training volumes (Figure 3a) reported that training-induced changes inMitoVD tended to increase
with greater training volumes (41). However, the lack of significant differences between groups
with the three highest training volumes indicates the potential existence of a plateau for changes
in mitochondrial content at greater training volumes. Interestingly, four of the smallest changes in
MitoVD coincide with some of the lowest exercise intensities (Figure 3a); this and recent research
(55) suggest there may also be a role of exercise intensity in determining training-induced changes
in mitochondrial content.

It is difficult to draw strong conclusions regarding the effects of exercise intensity on training-
induced changes in MitoVD. Although two studies from the same group have reported greater
training-induced changes in MitoVD with higher-intensity training, the high-intensity groups also
completed a greater training volume (51, 56). One study has reported greater increases in MitoVD
with high- versus low-intensity training (49); however, this study recruited middle-aged adults
with type 2 diabetes and employed quite a low intensity (∼50% Ẇmax) in the low-intensity group.
In contrast, another study involving obese men observed almost twice the increase in MitoVD
following moderate- (∼64% Ẇmax) versus very-high-intensity (∼200% Ẇmax) training (50). Fur-
ther research is required, but it appears that training volume is the more important determinant
of training-induced changes in MitoVD, and there may be an exercise-intensity threshold below
which changes in MitoVD are limited. This is reinforced by the observation that no changes in
MitoVD were reported after 32 days of low-intensity cross-country skiing (342 ± 42 min/day)
(57). This result also seems to suggest that exercise time (duration) is not an independent deter-
minant of changes in MitoVD, and a long exercise duration [nearly 6 h/d in this latter study (57)]
cannot compensate for a low exercise intensity.

In skeletal muscle fibers, there are two main subpopulations of mitochondria: intermyofibrillar
(IMF)mitochondria,which commonly account for>80%of total mitochondria, and subsarcolem-
mal (SS) mitochondria, which typically account for <20% of total mitochondria [although the
relative amount of SSmitochondria has been reported to be>30% in competitive, professional cy-
clists (52)]. SS mitochondria are also termed paravascular mitochondria, as they are almost always
located in sarcolemmal grooves adjacent to capillary blood vessels that supply the mitochondria
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a   Mitochondrial volume density 
(determined via TEM)

b   CS activity                          
(via enzyme activity assay)

c

d

e

f
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Figure 3

Cell-dependent phenotypes (i.e., mitochondrial content) and training. The relationship between (a) training volume and changes in
MitoVD, (b) training volume and changes in CS activity, (c) exercise intensity and changes in CS activity, (d) exercise frequency and
changes in CS activity, (e) exercise frequency and changes in CS activity (normalized to volume of training), and ( f ) training type and
mitochondrial content. Note: for panels a–c, the colors correspond to the intensity zones depicted in Figure 2, with the area of the
shapes proportional to the training intensity employed in each study. Note also that the squares represent the results from a single study
that compared five programs consisting of different training volumes. Abbreviations: CR, cardiorespiratory; CS, citrate synthase;
MitoVD, mitochondrial volume density; TCA, tricarboxylic acid; TEM, transmission electron microscopy; Ẇmax, the intensity
associated with the maximal rate of oxygen consumption (V̇O2max). Figure adapted from images created in BioRender. Bishop D. 2025.
https://BioRender.com/d62p435.

substrates and oxygen (and remove metabolic byproducts) (58, 59). Most studies have reported
that cardiorespiratory exercise training leads to a greater relative increase in SS mitochondria but
a greater absolute increase in IMFmitochondria (16, 39, 40, 43, 51, 56). As a consequence, changes
in the IMF mitochondria contribute more to the increase in total mitochondrial content than SS
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mitochondria. Both mitochondrial populations have been reported to increase in all fiber types;6

however, while the average MitoVD varies in different fiber types [∼6% in type I fibers to ∼4.5%
in type IIa fibers and ∼2.5% in type IIx fibers (61–63)], the largest training-induced increases in
MitoVD occur in type IIa fibers, such that the MitoVD in type IIa fibers can be as high as in type I
fibers (52, 61, 62). Whether different exercise prescriptions have divergent effects on the two
mitochondrial populations, and fiber-specific adaptations, remains to be investigated. Given that
skeletal muscle fiber recruitment is related to exercise intensity (64), further research is also re-
quired to investigate whether higher exercise intensities stimulate greater changes to MitoVD in
type II fibers compared with lower exercise intensities.

There is also a relationship between total training volume and changes in mitochondrial con-
tent when assessed with CS activity (65, 66) (Figure 3b). This association was even stronger when
studies employing very-high-intensity exercise were not included; this suggests that when relative
exercise intensity is <100% Ẇmax, training volume is an important driver of increases in CS activ-
ity. There was, however, no significant association between exercise intensity and changes in CS
activity (Figure 3c; consistent with observations for MitoVD). This does not imply that intensity
is unimportant; in the two studies reporting greater increases in CS activity with higher-intensity
training, the comparison group trained at a relatively low intensity (∼50% Ẇmax or walking) (67,
68). This again supports the hypothesis that there may be an exercise-intensity threshold below
which changes in mitochondrial content are limited. There is also some evidence that a high in-
tensity can compensate for a lower training volume; however, we are not aware of any studies
reporting a significantly greater increase in CS activity with either high- or very-high-intensity
exercise compared with moderate-intensity exercise (if the moderate intensity is >50% Ẇmax)
(69–73). While the effectiveness of higher exercise intensities to increase mitochondrial content
continues to be debated (53, 54), what is clear is that very-high-intensity exercise can be more
time efficient; i.e., changes in CS activity per exercise time or training volume are greater with
very-high-intensity than moderate-intensity exercise (71–73).

We are not aware of studies directly investigating the role of exercise frequency on mitochon-
drial content, but some insights can be obtained by comparing the findings from studies that
have employed different training frequencies. The first observation is that the relationship be-
tween exercise frequency and changes in CS activity appear to represent an inverted-U function
(Figure 3d). The larger changes in CS activity with moderate- versus low-frequency training
can probably be attributed to differences in total training volume (65). This is reinforced by
the absence of a significant relationship between exercise frequency and change in CS activity
normalized to total training volume (Figure 3e). The smaller change in CS activity with high-
versus moderate-frequency training is more difficult to explain but can possibly be attributed to
the reduced recovery between exercise sessions.

There has been limited research on the influence of exercise type on mitochondrial content,
with most research conducted using cardiorespiratory exercise. This can probably be attributed
to the view that resistance-training-induced increases in myofiber cross-sectional area are likely
to dilute skeletal muscle mitochondrial volume (i.e., myofibrillar hypertrophy leads to a decrease
in the proportion of the muscle volume occupied by mitochondria) (74–76). Indeed, early studies
using TEM reported that MitoVD was reduced after six weeks to six months of resistance training
in young, healthy adults; the absolute volume of mitochondria tended to remain constant (74–76).
Resistance-training-induced dilutions of mitochondrial content have also been inferred from de-
creases in CS activity (per mg of muscle or protein) (77–80). However, the notion that resistance

6Although there are many methods for categorizing muscle fibers (e.g., color, and ATPase or SDH staining),
the identification of myosin heavy chain isoforms appears to be the best choice for fiber type delineation (60).

Review in Advance. Changes may 
still occur before final publication.

21.10 Bishop • Lee • Picard



D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  U
ni

ve
rs

id
ad

 C
om

pl
ut

en
se

 d
e 

M
ad

rid
 (

ar
-1

18
04

4)
 IP

:  
15

4.
59

.1
24

.1
41

 O
n:

 F
ri,

 0
7 

F
eb

 2
02

5 
05

:4
0:

54

PH87_Art21_Bishop ARjats.cls November 26, 2024 13:17

training always dilutes skeletal muscle mitochondrial content has been challenged by reports of
unchangedMitoVD (81) or CS activity (82–89) after some resistance training interventions and the
observation that elite strength athletes have a similar MitoVD to untrained individuals (90). This
suggests that it is possible to achieve proportional increases in mitochondrial content and my-
ofibrillar volume with some types of resistance training. Two studies have reported increased CS
activity with resistance training (91, 92), but, in the only study to also include TEM (91), this was
without a significant increase in MitoVD. Collectively, these results suggest that some resistance
training prescriptions can increase absolute but not relativemitochondrial content in skeletal mus-
cles. However, more research is required to determine whether some of the contrasting findings
can be attributed to different resistance training prescriptions (e.g., weight lifted, training volume).
Future investigations that include direct measures of mitochondrial volume (e.g., TEM, but also
FIB-SEM) are also needed to clarify some of the conflicting findings.

Mitochondrial Features (Mitochondrial Morphology)

The relationship between form and function is a ubiquitous theme in biology, and the architecture
of the mitochondria is an excellent example (93). Despite this, the effect of different exercise pre-
scriptions on mitochondria form (morphological features) remains an underexplored topic. One
of the most studied areas has been cristae density, with the consensus being that mitochondria are
optimized andwell-balanced units and that it is not possible to increase cristae density (total cristae
surface area divided bymitochondrial volume),which is fixed at around 30µm2·µm−3 (58, 94). For
example, in a cross-sectional study, the mitochondrial cristae density in well-trained, moderately
trained, and untrained individuals did not differ (58). More recent findings support the concept
of plasticity, as mitochondrial cristae density was 25% higher in endurance-trained athletes (95)
and 16% higher in resistance-trained athletes (90) when compared with untrained individuals
(Figure 4a). Interestingly, values for mitochondrial cristae density close to 60 µm2·µm−3 have
been reported in hummingbird flight muscles (96), which also supports the potential for mito-
chondrial cristae density in mammalian muscle to exceed 30 µm2·µm−3. Nonetheless, researchers
have not observed significant changes in mitochondrial morphology with less than three months
of either cardiorespiratory (95) or resistance (74) training, suggesting that the higher cristae den-
sity values in well-trained athletes cannot be achieved by short-term training (regardless of type).
Much longer training studies, with potentially higher values of important exercise prescription
variables like training volume and/or intensity, may be required to demonstrate training-induced
changes in cristae density. Further research is also required on other underinvestigated areas, such
as the effects of different exercise prescriptions on the size, length, circularity, and complexity of
mitochondria.

Mitochondrial Activities (MitoPS and Activities of the OxPhos Complexes)

Based on the few studies that have directly assessed exercise-induced changes in MitoPS, there
is emerging evidence that increases in MitoPS are more likely following higher (89, 97–99) than
lower (97, 100, 101) intensity cardiorespiratory exercise; however, there has been limited compar-
ison of different exercise intensities within the same study. Given the evidence that total training
volume is an important determinant of changes in mitochondrial content [see the section titled
Cell-Dependent Phenotypes (i.e., Mitochondrial Content) and Training], it would be interesting
to investigate the influence of cardiorespiratory training volume on MitoPS (along with the in-
fluence of training frequency and exercise duration). Regarding exercise type, although resistance
exercise has sometimes been reported to increase MitoPS (89, 102, 103), these changes are typ-
ically less than those observed following moderate- to high-intensity cardiorespiratory exercise
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Figure 4

Exercise alters multiple domains of mitochondrial biology. A summary of the effects of exercise on (a) mitochondrial cristae density,
(b) mitochondrial protein synthesis, (c) activity of the ETC complexes (I–IV), (d) mitochondrial respiratory function, and
(e) mitochondrial dynamics: fusion, fission, and mitophagy. In panel b, the thicker outline of the protein indicates an increase in activity
of enzymes following exercise training. Abbreviations: CR, cardiorespiratory; CRE, cardiorespiratory exercise; ETC, electron transport
chain; RE, resistance exercise; RT, resistance training. For panel d, each point represents an individual study, and the solid line
represents the trend of the relationship between exercise intensity and change in respiration. Figure adapted from images created in
BioRender; Bishop D. 2025. https://BioRender.com/w45v993.

(89, 97, 102) (Figure 4b). Most resistance exercise studies have employed relatively heavy loads
(loads that can only be lifted 8–12 times), and it is not known whether higher training volumes
might promote greater increases in MitoPS; one study has reported greater increases in MitoPS
when concentric and eccentric actions were 6 s versus 1 s in duration (103), which suggests that
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time under tension might be an important determinant of resistance-exercise-induced increases
in MitoPS. Finally, to maintain exercise-induced increases in MitoPS, it is likely to be important
that progression is applied to the exercise stimulus. One study reported that exercise-induced in-
creases in MitoPS were reduced after 10 weeks of either cardiorespiratory or resistance training
(89); similar findings have been reported for myofibrillar protein synthesis (104).

Increased MitoPS, which includes the import of proteins from the cytoplasm into mitochon-
dria, may underlie changes in the abundance and activities of the four multiprotein complexes
(complexes I to IV) of the electron transport chain (in conjunction with F0F1–ATP synthase or
complex V), which are responsible for energy conversion within mitochondria via OxPhos. How-
ever, we are aware of only three studies investigating changes in the enzymatic activities of the
OxPhos complexes in humans (17, 105, 106). In the first study, there were similar increases in
complex I to IV activity (46–61%) and CS activity (51%) following 6 weeks of training (a combi-
nation of moderate- and high-intensity exercise performed 4×/week across 24 sessions). A second
study also reported that changes in complex I to IV activity (40–50%) were stoichiometrically as-
sociated with the overall increase in CS activity (∼40%), but were only significant following high
(2×/day, 7 days/week, for 3 weeks across 40 sessions) and not normal (3×/week for 2 weeks across
6 sessions) volume high-intensity interval training (17). These findings of proportional changes
in mitochondrial content and OxPhos enzyme activity raise the possibility that training-induced
changes in OxPhos enzyme activity may also be influenced by total training volume (Figure 4c).
However,more research is required to test this hypothesis and to assess the effects of manipulating
other exercise parameters on OxPhos complex enzyme activities.While two studies have reported
similar percentage changes in complexes I to IV with training (17, 105), another study from one
of these two research groups reported much larger increases in Complex I activity (152%) than
the activities of complexes II to IV (40–58%) and CS activity (45%) (106). This finding is dif-
ficult to explain, as they employed a very similar training protocol to their previous study (105)
(i.e., a combination of moderate- and high-intensity exercise performed 4×/week across 24 ses-
sions). Nonetheless, given that it has previously been observed that changes in the relative protein
abundance of complex I did not correlate with any other complex (48), and the capacity of com-
plex I constrains ATP synthesis (107), further research should investigate whether the individual
complex activities have divergent responses to different exercise prescriptions.

Mitochondrial Respiratory Function

Mitochondrial cell-dependent phenotypes (e.g., mitochondrial content), features (e.g., size and
shape), and even activities (e.g., enzymatic activities of the OxPhos complexes) do not always re-
flect the functional capacities of mitochondria. Indeed, training-induced changes in mitochondrial
respiratory function have been reported without concomitant changes in mitochondrial content
(108–110) and vice versa (16, 40). This suggests that complex functions, which emerge from the
interactions among more simple features and activities, can be modulated by mechanisms beyond
the simple abundance of the molecular building blocks. In the context of understanding how
exercise ultimately influences mitochondrial biology, this highlights the need to directly assess
the influence of different exercise prescriptions on mitochondrial respiratory function (65).

The greatest training-induced changes in mass-specific mitochondrial respiration (i.e., the rate
of oxygen consumption per gram of tissue) are typically observed with higher volumes of high-
intensity cardiorespiratory training (17, 111–116) (Figure 4d). Neither a high training volume
(117) nor a high training intensity (108, 109, 118–120) alone appears sufficient to achieve the
largest increases in mass-specific mitochondrial respiration. For example, when directly compar-
ing training groups matched for total training volume, only the group exercising at the higher
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exercise intensity increased mass-specific mitochondrial respiration (68, 111). Similarly, very-
high-intensity training (108, 109, 118–120) was associated with smaller increases in mass-specific
mitochondrial respiration than high-intensity training, probably due to the substantial reduction
in training volume necessary to train at these very high intensities. It has, therefore, been hypoth-
esised that to maximize improvements in mass-specific mitochondrial respiration it is important
to exercise at the highest cardiorespiratory exercise intensity that will also allow a relatively large
training volume to be completed (65). Nonetheless, it could be argued that very-high-intensity
training is more time efficient, as it produces the largest gains in mass-specific mitochondrial
respiration per total training volume or time (65, 121).

Despite the abovementioned results, it has recently been suggested that there might be an
upper limit to the volume of high-intensity training that can be tolerated by healthy individ-
uals before there is a decrease in mitochondrial respiratory function (122). In this study, there
was a decrease in intrinsic mitochondrial respiration (i.e., in vitro respiratory function assessed in
isolated mitochondria) when the volume of high-intensity training was increased by ∼70%.How-
ever, it is important to note that measures on isolated mitochondria, which represent only a small
subpopulation of the mitochondria, might not accurately reflect changes to in vivo mitochon-
drial respiratory function (123). In support of this, two studies using the permeabilized muscle
fiber technique (where fibers contain all of their mitochondria and where normal mitochondrial
morphology and intracellular interactions are preserved) reported training-induced increases in
mitochondrial respiration after a substantially greater training load (17, 112). Further research is
required to clarify these disparate findings.

With respect to training type, few studies have investigated changes in mitochondrial respi-
ratory function with resistance training.When measured using high-resolution respirometry and
permeabilized skeletal muscle fibers, mass-specific mitochondrial respiration increased after 6–
12 weeks of various resistance training interventions [including high-load, low-load, and blood
flow–restricted training approaches (82, 85, 124)]. Furthermore, young, resistance-trained ath-
letes (with ≥5 years of training) had higher mass-specific mitochondrial respiration than healthy
controls (125).This suggests that both short- and long-term resistance training can increase mass-
specific mitochondrial respiratory function in skeletal muscle. Furthermore, given that two of
these studies reported unchanged CS activity (82, 85) (see the section titled Cell-Dependent
Phenotypes), this indicates the potential for resistance training to increase intrinsic mitochon-
drial respiratory function. However, this idea contrasts with three studies from the same research
group reporting unchanged mitochondrial respiratory function (measured in isolated mitochon-
dria) after 8–12 weeks of resistance training in healthy, sedentary adults (81, 116, 126).As described
earlier, these conflicting findings may be partially attributed to differences in rates of respiration
when measured in isolated mitochondria versus within their usual cellular milieu (i.e., in per-
meabilized fibers) (127). The role of exercise frequency has not been directly investigated, but a
higher frequency of cardiorespiratory exercise is associated with larger training-induced changes
in mass-specific mitochondrial respiration (17); however, this can probably be attributed to the
concomitant larger training volume rather than the greater training frequency, per se.

The mechanisms responsible for training-induced increases in mitochondrial respiration re-
main to be established. However, it has been suggested that improvements in mass-specific
mitochondrial respiration can predominantly be attributed to an expansion of the mitochon-
drial network (i.e., an increase in mitochondrial content) (108). This is supported by reports that
changes in mitochondrial respiration are no longer apparent when normalized to concomitant
changes in various markers of mitochondrial content (17, 68, 108, 118, 128) and the absence
of significant changes in mass-specific respiration when there is not a significant increase in
mitochondrial content (117). However, there is evidence that very-high-intensity exercise (e.g.,
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SIT) can increase mitochondrial respiration relative to mitochondrial content (i.e., it increases
mitochondrial-specific or intrinsic respiration) (109). In contrast, studies have also reported
greater training-induced increases in mitochondrial content than mitochondrial respiration, espe-
cially in studies employing relatively large training volumes (16, 68, 109, 119). Further investiga-
tion is warranted into the possible underlying mechanisms responsible for a dissociation between
training-induced changes in mass-specific respiration and mitochondrial content (especially when
assessed via TEM) and whether this can be attributed to specific exercise prescription variables.

Mitochondrial Behaviors

Mitochondrial fission and fusion are two integral behaviors that have been shown to influence
other mitochondrial characteristics (e.g., mitochondrial morphology and various mitochondrial
functions). In the absence of visual confirmation that exercise alters these behaviors, research
in humans has largely been restricted to measuring the abundance of key regulatory proteins.
Consistent with the more fused mitochondrial network that occurs in response to cardiorespira-
tory training, the relative abundance of proteins that regulate fusion (e.g., MFN1,MFN2, OPA1)
has often (16, 37, 68, 81, 109, 129–131), but not always (37, 81, 131, 132), been reported to in-
crease with cardiorespiratory training [with inconsistent changes sometimes reported for different
proteins, even within the same study (37, 81, 131)] (Figure 4e). Two studies have reported sim-
ilar increases in MFN2 abundance following moderate- or high-intensity training (68, 109), but
one study reported greater increases in OPA1 with high- versus moderate-intensity training (81).
Low-load, high-volume resistance training (i.e., 30% of the one-repetition maximum lifted until
failure) has been observed to increase OPA1 (but not MFN2) protein abundance (133), whereas
no changes in fusion proteins were reported after training that included higher training loads (81,
133, 134). The influence of training on fission proteins is less consistent. Increases (37, 129, 133),
no changes (81, 109, 133, 134), and decreases (81, 131) in the relative abundance of proteins that
regulate fission (e.g., FIS1 and DRP1) have been reported in response to cardiorespiratory exer-
cise training. While it has been proposed that resistance exercise may promote a profission state
(based on exercise-induced changes in mitochondrial morphology and genes that promote fission)
(90),most resistance training studies (81, 133, 134) [except one study that included low-load, high-
volume resistance training (133)] have not observed changes in fission proteins. In summary, we
know little about the influence of different exercise prescriptions on fusion and fission, especially
when these behaviors are measured directly.

Although there is some evidence that mitochondrial fission partitions severely damaged sec-
tions of mitochondria for subsequent removal, whether or not fission is a prerequisite for
subsequent removal continues to be debated (135). Nonetheless, research in mice, which directly
assessed mitophagy in vivo (with a fluorescent reporter gene, pMitoTimer), suggests that mi-
tophagy is sensitive to energy stress and is induced by a single session of cardiorespiratory exercise
(90 min at various treadmill speeds) (136).We are not aware of comparable studies in humans, but
it is likely that exercise also induces mitophagy in human skeletal muscle. A recent study used an ex
vivo autophagy flux assay (where the fusion of the autophagosome with the lysosome is chemically
blocked, followed by measurement of the protein abundance of LC3-II, a marker of autophago-
some content); results suggested that there is a conserved exercise-induced increase in whole-
muscle autophagy flux in rodents and humans (137). Interestingly, the authors also reported a
trend for a greater exercise-induced increase in autophagy with very-high-intensity exercise (SIT)
compared with low-intensity exercise (137). Further research is required to investigate the effects
of manipulating different exercise prescription variables (including exercise type) on autophagy/
mitophagy flux. Interestingly, research on mitochondria-enriched fractions from mice indicates
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that exercise-induced mitophagy flux was attenuated following a period of exercise training (138).
It would be valuable to investigate whether this response is also conserved in humans and whether
it is possible to maintain the levels of exercise-induced mitophagy by progressing the exercise
stimulus (e.g., by increasing the exercise intensity).

SUMMARY

For close to 100 years, it has been known that exercise is a potent stressor that can alter multiple
domains of mitochondrial biology. Recent research has built on this foundation and is beginning
to uncover how manipulating different exercise prescription variables influences mitochondrial
adaptations to training. Cardiorespiratory training volume appears to be an important determi-
nant of changes in mitochondrial content, but there may be an exercise-intensity threshold below
which changes are limited. The long-held view that it is not possible to increase mitochondrial
cristae density is being challenged by the findings of cross-sectional studies, but there is no evi-
dence that cristae density can be increased by short-term training. Increases in MitoPS are more
likely following higher- than lower-intensity cardiorespiratory exercise, and less strongly stimu-
lated by resistance exercise. Training-induced changes in the enzymatic activities of the OxPhos
complexes appear to be greater with higher volumes of high-intensity cardiorespiratory training
and stoichiometrically associated with increases in mitochondrial content. The greatest training-
induced changes in mass-specific mitochondrial respiration are typically observed with higher
volumes of high-intensity cardiorespiratory training. The relative abundance of proteins that reg-
ulate fusion has often, but not always, been reported to increase with both cardiorespiratory and
resistance training.Mitophagy appears to be induced by a single session of cardiorespiratory exer-
cise, but more research using more direct measures (e.g., ex vivo autophagy flux assays) is required
to confirm these findings. Nonetheless, while these findings highlight that much progress has
been made, further research is required to optimize the prescription of exercise as a so-called mi-
tochondrial medicine. This will assist the transition toward the more holistic medical framework
envisioned by Hippocrates more than 2,000 years ago and allow scientists and practitioners to de-
velop more effective prescriptions of “exercise as medicine” to better prevent disease and improve
health.
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