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Abstract
Repeated breath-holding has been shown to elicit transient increases in haemoglobin and erythropoietin concentrations, 
while long-term engagement in breath-hold-related activities has been linked with improved hypercapnic tolerance, mental 
resilience, and favourable cardiorespiratory, cerebrovascular, and skeletal muscle adaptations. Given these findings, breath-
holding was proffered as a possible performance optimisation strategy a little over a decade ago. This prompted practitioners 
and researchers to explore its broader application either as a priming strategy completed immediately before an endurance 
activity or as an alternative hypoxic-hypercapnic training method. Therefore, this review aims to offer an update of the acute 
and long-term physiological responses to breath-holding that are relevant to athletic performance and provide an overview 
of the existing body of knowledge surrounding its potential utility and efficacy as a performance enhancement strategy. Cur-
rent evidence suggests that breath-holding may have potential as a priming strategy; however, further placebo-controlled 
studies are required to rigorously evaluate its efficacy. Additionally, it is evident that developing an effective protocol and 
administering it successfully is more complex than initially thought. Key factors such as the characteristics of the prescribed 
protocol, the timing of the intervention relative to the event, and the nature of the existing warm-up routine all require care-
ful consideration. This highlights the need for adaptable, context-specific approaches when integrating breath-holding into 
real-world sporting environments. Finally, while dynamic breath-hold training shows the greatest potency as a performance 
optimisation strategy, further research is necessary to determine the optimal training protocol (i.e., hypoxaemic-hypercapnic 
dose), and duration.
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Abbreviations
EPO  Erythropoietin
HIF  Hypoxia-inducible factor
IBM  Involuntary breathing movements
PPO  Peak power output
SpO2  Peripheral oxygen saturation
Q̇  Cardiac output
t-Hbmass  Total haemoglobin mass
TLC  Total lung capacity

VEGF  Vascular endothelial growth factor
V̇O2  Oxygen uptake
V̇O2max  Maximal oxygen uptake
V̇O2peak  Peak oxygen uptake

Introduction

Breath-hold physiology has captivated the scientific com-
munity’s interest for over a century (Hill and Flack 1908), 
with a substantial body of literature outlining the morpho-
logical characteristics of competitive and habitual diving 
populations as well as the physiological responses occur-
ring during and/or shortly after prolonged breath-holding 
(e.g., the diving response, trigeminocardiac reflex, haema-
tological responses, etc.) (see reviews by Lin 1988; Gooden 
1994; Ferretti 2001; Ferretti and Costa 2003; Foster and 
Sheel 2005; Fitz-Clarke 2018; Elia et  al. 2021c). This 
extensive corpus of research has shed light into the intricate 
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mechanisms underlying breath-holding and provided a 
glimpse into the long-term adaptive physiological processes 
associated with it.

Breath-holding performed in a sequential manner has 
been shown to elicit transient increases in haemoglobin 
(Schagatay et al. 2001; Elia et al. 2021b) and erythropoi-
etin concentrations (de Bruijn et al. 2008; Elia et al. 2019a, 
2021a), while long-term engagement in breath-hold-related 
activities has been linked with a blunted ventilatory response 
to hypercapnia (Delapille et al. 2001; Grassi et al. 1994; 
Roecker et al. 2014; Song et al. 1963), mental resilience 
(Alkan and Akis 2013; Allinger et al. 2024b), and favourable 
cardiorespiratory (Costalat et al. 2017, 2015; Lemaitre et al. 
2015), cerebrovascular (Joulia et al. 2009; Moir et al. 2019; 
Vestergaard and Larsson 2019), and skeletal muscle adap-
tations with respect to performance (Bae et al. 2003; Kjeld 
et al. 2018; Elia et al. 2019b). Taken together, the insights 
gleaned from the literature led practitioners and researchers 
to explore the broader application of breath-holding as either 
a priming strategy prior to endurance events or as an alterna-
tive hypoxic-hypercapnic training modality (see reviews by 
Lemaitre et al. 2010; Bouten et al. 2024).

In this review, we aim to provide an update relating to the 
physiological effects associated with acute and long-term 
engagement in breath-hold-related activities relevant to 
athletic performance, delve into breath-hold priming strate-
gies and training regimens used to improve performance, 
but also explore how these as well as breath-holding per se 
could effectively and safely be applied across different sports 
and athletic pursuits. Duly, this review is intended to help 
inform practitioners, coaches, athletes and researchers about 
the possible effects, challenges and potential applications 
of breath-hold training and the necessary precautions that 
ought to be in place when employed.

Physiological responses to acute 
breath‑holding

In humans, the theoretical maximum breath-hold duration 
following air breathing (21% oxygen) is determined by the 
body’s oxygen reserves and the rate at which they are con-
sumed (Ferretti et al. 1991; Mithoefer 1959, 1965). Since 
aerobic metabolism during a breath-hold is limited to the 
body’s finite oxygen stores, a larger initial oxygen reservoir 
will extend the aerobic dive limit, thereby enabling longer 
breath-holds to be reached (Mithoefer 1959; Whitelaw et al. 
1987). Thus, factors that may contribute towards enhancing 
the body’s oxygen reservoirs are considered advantageous 
with respect to breath-hold performance.

Unlike diving mammals which possess exceptionally high 
oxygen stores in their skeletal muscle and blood—both of 
which are key predictors of their diving capabilities—human 

breath-hold capacities are greatly dependent on lung oxy-
gen stores. These reserves are influenced by the inspired 
alveolar oxygen fraction and lung volume, as for any given 
oxygen fraction in the alveoli, an individual’s lung volume 
is directly proportional to their oxygen stores (Mithoefer 
1965; Muxworthy 1951; Whitelaw et al. 1987). It is thus, 
not surprising that breath-hold performance significantly 
improves when conducted at higher lung volumes [e.g., in 
proximity to total lung volume (TLC) vs. at ~ 85% of lung 
volume] (Overgaard et al. 2006; Whitelaw et al. 1987; Mith-
oefer 1965). These performance gains result from a greater 
oxygen reservoir being readily available to support aerobic 
metabolism but also from an attenuated oxygen desaturation 
rate, an enhanced carbon dioxide buffering capacity, and a 
delayed onset of the Hering–Breuer deflation reflex (Godfrey 
et al. 1969; Mithoefer 1959, 1965; Rose et al. 1979). Alto-
gether, underscoring the elemental role of oxygen stores in 
determining breath-hold capacity.

Cardiovascular responses

During the state of breath-holding, a series of physiologi-
cal responses are elicited. Amongst these, a parasympathet-
ically-induced bradycardia is noted, caused by the removal 
of the phasic tachycardia during inspiration and the pulmo-
nary stretch receptor input converging at the nucleus tractus 
solitarius (Kato et al. 1988; Lin et al. 1974; Hayashi et al. 
1997; Lemaitre et al. 2015); the teleological benefit of which 
is to lower the myocardial oxygen consumption (Hoiland 
et al. 2017). Peripheral vasoconstriction is initiated via an 
elevated sympathetic tone at the body’s extremities and non-
vital organs (Sterba and Lundgren 1988; Heusser et al. 2009; 
Breskovic et al. 2011; Heistad et al. 1968; Leuenberger et al. 
2001), with these shifting from primarily aerobic to pre-
dominantly anaerobic metabolism (Fig. 1). The functional 
role of the peripheral vasoconstriction is to prioritise oxy-
gen-rich blood to the brain as attested by the ensuing rise 
in carotid artery (Jiang et al. 1994; Pan et al. 1997) and cer-
ebral blood flow (Joulia et al. 2009; Vestergaard and Larsson 
2019). Overall, the primary function of these physiological 
responses is to slow the rate of oxygen desaturation until 
respiration is restored.

Though evident in all humans, the magnitude of the 
physiological components discussed above vary greatly 
between diving and non-diving cohorts, differences which 
may result from training-induced stimuli and/or a natural 
selection of genetic polymorphisms (see review by Elia 
et al. 2021c). Regardless, it is evident that when breath-
holding is coupled with face immersion, the bradycardial 
response is potentiated in both populations, resulting in 
longer breath-holds to be attained (Schuitema and Holm 
1988; Hayashi et al. 1997; Daly 1997; Perini et al. 2010). 
Thus, when the forehead, eyes, and nose come into contact 
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with water, the facial cold receptors—which are inner-
vated by the ophthalmic nerve—are activated (Schagatay 
and Holm 1996). This interaction triggers the trigeminal 
nerve, which converges with the motor nucleus of the 
vagus nerve, consequently evoking the ‘trigeminocar-
diac reflex’ (Hayashi et al. 1997; Lemaitre et al. 2015). 
This reflex is characterised by bradycardia, hypotension, 
gastric hypermobility and cerebrovascular vasodilata-
tion (Schaller 2004; Lemaitre et al. 2015). Importantly 
the extent of this reflex is highly variable and primarily 
depends on the water temperature the facial cold receptors 
are exposed to, with water temperatures between 10 and 
15 °C eliciting a more pronounced response (Daly 1997), 
while temperature variations above this range seem to have 
minimal effect (Schagatay and Holm 1996; Asmussen and 
Kristiansson 1968; Mukhtar and Patrick 1986; Folinsbee 
1974). Thus, the combination of breath-holding and face 
immersion has a synergistic effect on bradycardia, which 
is greater than the sum of each individual response (Marsh 
et al. 1995; Hayashi et al. 1997).

Haematological responses

Splenic contractions

The spleen represents a constitutive part of the sympathetic 
nervous system (Felten et al. 1985), is implicated in the pro-
cess of erythrophagocytosis, and serves as an antibody pro-
duction site as well as an erythrocyte reservoir, with humans 
roughly storing 10% of their total erythrocyte volume within 
it (Stewart and McKenzie 2002). Under conditions where 
the sympathetic nervous system is stimulated (e.g., exer-
cise, hypercapnia, hypoxaemia), the spleen contracts, con-
currently releasing its stored erythrocytes into the systemic 
circulation (Laub et al. 1993; Shephard 2016; Elia et al. 
2021b, 2024b; Pernett et al. 2021; Lindblom et al. 2024) 
(Fig. 1). In a breath-holding context, the splenic response 
has been documented to reach full effect after a series of 
3–5 repeated maximal breath-holding attempts, with hae-
moglobin increases of 3–8 g/L being measured in untrained 
cohorts (Schagatay et al. 2001, 2005; Richardson et al. 

Fig. 1  A schematic overview of current knowledge on the acute and 
long-term physiological responses to breath-holding. Arrows up (↑) 
and down (↓) within framed box indicate an increase or a decrease 
of the associated variable. Dotted arrow lines (-----) indicates poten-
tial mechanisms. ACTH, adrenocorticotropic hormone; ATP, adeno-
sine triphosphate; C:Fi, capillary-to-fibre ratio; CD, capillary density; 
CRH, corticotropin-releasing hormone; EPO, erythropoietin; Hb, 
haemoglobin concentration; Hbmass, haemoglobin mass; HIF1a, 
hypoxia-inducible factor 1 alpha;  O2, oxygen; RBC, red blood cells; 
ROS, reactive oxygen species; RTC, reticulocyte count. Support-
ing literature is denoted by numbers where; 1 = Arany et  al. (2008), 
2 = Ayers et  al. (1972), 3 = Baković et  al. (2003), 4 = Bakovic et  al. 

(2013), 5 = Bouten et  al. (2019), 6 = Breen et  al. (1996), 7 = de 
Bruijn et al. (2008), 8 = Desplanches et al. (1993), 9 = Eichhorn et al. 
(2017), 10 = Elia et  al. (2019a), 11 = Elia et  al. (2019b), 12 = Elia 
et  al. (2021a), 13 = Elia et  al. (2021b), 14 = Engan et  al. (2013), 
15 = Espersen et  al. (2002), 16 = Gustafsson and Sundberg (2000), 
17 = Heistad et al. (1968), 18 = Heusser et al. (2009), 19 = Joulia et al. 
(2002), 20 = Joulia et  al. (2003), 21 = Kon et  al. (2014), 22 = Kyhl 
et al. (2016), 23 = Rodriguez-Miguelez et al. (2015), 24 = Sterba and 
Lundgren (1988), 25 = Stroka et al. (2001), 26 = Sureda et al. (2015), 
27 = Terrados et  al. (1990), 28 = Yang et  al. (2022). Figure created 
with BioRender.com
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2005; Elia et al. 2021b, 2022a). These increases potentiate 
the oxygen binding and carrying capacity of blood; hence, 
the oxygen reserve is increased by the systemic mobilisa-
tion of erythrocytes. Notably, these elevations are reported 
to be restored to pre-breath-holding levels within a 10-min 
window (Schagatay et al. 2001, 2005). As a result, succes-
sive breath-holds begin with a greater amount of readily 
available oxygen, attenuating the oxygen desaturation rate, 
and thereby contributing to an extended breath-hold dura-
tion (Bakovic et al. 2013; Schagatay et al. 2005). Thence, a 
larger splenic volume, capable of storing a greater number of 
erythrocytes is considered advantageous for breath-holding 
performance (Elia et al. 2021b; Schagatay et al. 2012).

Erythropoietin

Exposure to hypoxic/hypoxaemic conditions activates the 
hypoxia-inducible factor (HIF) signalling, consequently 
promoting the transcriptional activation of the erythropoi-
etin (EPO) gene (Ebert and Bunn 1999; Haase 2013, 2010). 
This, in turn, stimulates the production of the glycoprotein 
hormone EPO, primarily by the kidneys (Jelkmann 1992; 
Knaupp et al. 1992). While no studies have yet explored 
the effects of voluntary breath-holding on HIF expression, 
several investigations have demonstrated that the systemic 
hypoxaemia brought on by breath-holding transiently ele-
vates serum EPO levels (de Bruijn et al. 2008; Elia et al. 
2019a, 2021a; Kjeld et al. 2015). Specifically, in both trained 
(Elia et al. 2019a) and non-divers (Elia et al. 2021a; de 
Bruijn et al. 2008), a series of repeated breath-holds (5–15 
repetitions) has been shown to be efficacious in stimulating 
the release of the glycoprotein hormone EPO, with these 
increases being notably greater after a series of dynamic 
[+ 4.0 mIU/L (+ 63%), Elia et al. (2019a)] as opposed to 
static breath-holds [+ 1.4 mlU/L (+ 16%), de Bruijn et al. 
(2008)]. Considering that the magnitude of EPO release 
is directly proportional to the level of systemic hypoxemia 
(Elia et al. 2019a; Eckardt et al. 1989; Knaupp et al. 1992), 
it is perhaps unsurprising that dynamic breath-holds led to 
a higher EPO increase, since this protocol was associated 
with a more pronounced desaturation [62 ± 10% (Elia et al. 
2019a) vs. 73 ± 11% (de Bruijn et al. 2008)].

Breath‑hold phases

Inevitably, over the time course of a voluntary breath-hold, 
the arterial partial pressure of oxygen gradually decreases 
while carbon dioxide levels rise (Lin et al. 1974). These 
changes stimulate both central and peripheral chemorecep-
tors, consequently increasing the ventilatory drive and res-
piratory distress experienced by the apnoeist (Feiner et al. 
1995). Based on these sensory chemoreflexes, a breath-
hold can be divided into two distinct phases, namely: the 

“easy-going” and the “struggle” phase, separated by the 
physiological breaking point, identified as the point where 
the first involuntary breathing movement (IBM) is noted 
(Agostoni 1963; Lin et al. 1974). During the easy-going 
phase, the subject feels no immediate urge to breathe. In 
contrast, the struggle phase is defined by the individual’s 
psychological tolerance to the increasing hypoxaemic and 
hypercapnic stress, as well as the progressively intensified 
IBMs (Lin et al. 1974). Therefore, although the former can 
be quantified by physiological means (e.g., hypoxaemia and 
hypercapnia) (Feiner et al. 1995), the latter is as equally 
determined by volitional factors (Schneider 1930; Rigg et al. 
1974; Lin et al. 1974).

In summary, the ability to suppress respiratory urges and 
sustain breath-holds for prolonged durations relies on three 
fundamental principles: (i) the capacity for oxygen stor-
age [(i.e., lungs, blood (haemoglobin) and skeletal muscle 
(myoglobin)], (ii) the efficacy of oxygen conservation and 
utilisation (i.e., in large part dependent on cardiovascular 
and metabolic adjustments), and (iii) volitional factors (i.e., 
psychological tolerance to the increasing urge to breathe and 
the continuously intensified IBM).

Athletic performance and breath‑holding

Under normoxic conditions, the maximal rate at which oxy-
gen can be transported from the environment to the mito-
chondria and utilised to support oxidative phosphorylation 
is widely recognised to be determined by the physiological 
limits of the Fick equation (Levine 2008). Maximal oxygen 
uptake ( V̇O2max), one of the major characteristics that deter-
mine performance in endurance sport (di Prampero 2003), is 
attained through a concurrent increase in cardiac output ( Q̇ ) 
and the arteriovenous oxygen content difference (Wasserman 
2005). In endurance-trained athletes, oxygen transport is the 
main limiting factor of V̇O2max, with an estimated 70–80% 
attributed to maximal Q̇ , whereas in untrained individuals, 
mitochondrial oxygen consumption also plays a major role 
(Levine 2008; Wagner 2000; Cerretelli and Di Prampero 
1987). Therefore, increasing the oxygen supply to the exer-
cising muscles might thus improve performance (Mallette 
et al. 2018; Bejder et al. 2019; Linnarsson et al. 1974; Mac-
donald et al. 1997).

The oxygen carrying capacity of blood is primarily facil-
itated by haemoglobin, the main protein in erythrocytes. 
Haemoglobin transports ~ 98% of the oxygen in blood, with 
the remaining ~ 2% (0.3 mL oxygen per 100 mL of plasma) 
dissolved and carried in plasma (Pittman 2011; Dunn et al. 
2016). When fully saturated and assuming a normal hae-
moglobin concentration (e.g., 140 g  L−1) with a constant 
oxygen capacity (1.39 mL  g−1), haemoglobin carries nearly 
20 mL of oxygen per 100 mL of whole blood (McArdle et al. 
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2010). Given this, it is not surprising that variations in blood 
volume, total haemoglobin mass (t-Hbmass) and haemoglobin 
concentration lead to reciprocal changes in exercise capac-
ity, proportional to alterations in the oxygen-carrying capac-
ity of blood (Kanstrup and Ekblom 1984; Parisotto et al. 
2000; Prommer et al. 2007; Calbet et al. 2006; Bejder et al. 
2019). Among these parameters, t-Hbmass (r = 0.79) exhibits 
the strongest relationship with V̇O2max (Schmidt and Prom-
mer 2008; Convertino 1991; Sawka et al. 2000; Kanstrup 
and Ekblom 1984). Specifically, a 1% change in t-Hbmass 
was associated with a 0.6–0.7% change in V̇O2max (Saun-
ders et al. 2013). Consequently, factors that may contribute 
towards enhancing the availability of oxygen, such as the 
level of circulating haemoglobin, are considered advanta-
geous from a performance perspective (Heinicke et al. 2001; 
Schmidt et al. 2002; Calbet et al. 2006).

Breath‑holding as a priming strategy

In the ever-ending search for performance optimisation strat-
egies, a little over a decade ago, breath-holding was prof-
fered as a potential candidate (Lemaitre et al. 2010), as of its 
capacity to transiently elevate haemoglobin concentrations 
and t-Hbmass through a splenic response (Keeler et al. 2024; 
Schagatay et al. 2001; Elia et al. 2021b). More importantly, 
these increases are reported to persist up to 10-min after 
breath-holding (Schagatay et al. 2001, 2005). As such, the 

ability to acutely improve, by natural means, the oxygen 
binding and carrying capacity of blood allured researchers 
to explore the application of breath-holding as a priming 
strategy prior to endurance events.

Sperlich et al. (2015) was amongst the first to put this 
hypothesis to test. In their study, the authors found that when 
a cycling time-trial was preceded by breath-holding (i.e., 
four repeated dry maximal bouts), as opposed to eupnoea, 
it took on average 16 s longer for the subjects to reach the 
4-km endpoint [(breath-holding) 342 ± 34 s vs. 326 ± 68 s 
(control)] (Table 1). At face value, these results suggested 
that breath-holding may not serve as an effective priming 
technique. However, a couple of methodological limitations 
merit consideration. For instance, their subjects terminated 
their breath-holds before any form of desaturation occurred 
[peripheral oxygen saturation  (SpO2), (pre) 98 ± 0% vs. 
99 ± 0% (post)], possibly attributed to the lack of familiari-
sation to breath-holding, consequently the hypoxaemic stim-
ulus was inadequate to trigger the splenic response [(pre) 
71 ± 10 mL vs. 63 ± 11 mL (post)]. Additionally, the time-
interval between the last breath-hold and the time-trial may 
have been too short (30–45 s) to ensure complete recovery 
from the mental challenges posed by serial breath-holding—
a notion supported by the split times of the 4-km time-trial.

To rectify these limitations, subsequent work by Rob-
ertson et al. (2020) and Bouten et al. (2020) incorporated 
a familiarisation session, and extended the time-interval 

Table 1  Available studies that examined the use of breath-holding as a priming strategy for exercise performance
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between the breath-holds and the exercise trial (2–3 min). 
Interestingly, Robertson et al. (2020) noted an earlier time-
to-completion when the 400-m freestyle time-trial was 
performed after a standardised warm-up and serial breath-
holding (275.79 ± 12.88 s) compared with breath-holding-
only (278.64 ± 4.10 s) and control (278.66 ± 13.31 s; i.e., no 
warm-up nor breath-holding), results that did not stem from 
haemoglobin level differences. Yet, similarly to the study of 
Bouten et al. (2020), no differences were discerned with the 
warm-up-only trial (Table 1), conjointly reiterating the ele-
mental role of warm-up. Now given that exercise indepen-
dently evokes splenic contractions (Laub et al. 1993; Stewart 
et al. 2003; Lindblom et al. 2024), using breath-holding for 
the sole purpose of stimulating the splenic response seems 
unnecessary, especially when a warm-up is feasible.

More recently, Bourdas and Geladas (2021) demonstrated 
that a series of five repeated maximal static breath-holds 
combined with face immersion in cold water (12 °C) fol-
lowed by a 150 s warm-up (i.e., 1 W per kg of body mass 
load at 50–75 rpm ad libitum) successfully improved time to 
exhaustion (49.2 ± 4.8 s vs. 44.8 ± 8.1 s) during a cycling test 
[(i.e., intensity corresponding to 150% of peak power output 
(PPO)]. The reported performance gains likely pertained to 
a higher (~ 50%) accumulated V ̇O2 over the time course of 
the exhaustion test; a response that, similarly to Robertson 
et al. (2020), occurred in absence of any breath-hold-related 
changes in haemoglobin levels (Table 1). The authors tenta-
tively ascribed their results to a disturbance of the acid–base 
homeostasis, offering, for the first time, a potential alterna-
tive way by which serial breath-holding may act to affect 
performance. Later work by Wendi et al. (2023) indicated 
that integrating six maximal breath-holds over a 10-min 
unloaded cycling warm-up routine significantly improved 
peak oxygen uptake ( V̇O2peak) during an incremental cycling 
test (Table 1). Even though they did not evaluate acid–base 
responses, they too did not record any changes in haemoglo-
bin nor in red blood cell levels after breath-holding. Overall, 
it appears that beyond the splenic response, there seem to 
be other, possibly more potent mechanisms through which 
breath-holding may affect exercise performance, underscor-
ing the need for further research.

The application of dynamic breath-holding combined 
with face immersion, has also recently been explored (Wang 
et al. 2024). Integrating six maximal end-expiratory breath-
holds, each separated by 30 s of normal breathing, over a 
10-min unloaded cycling warm-up routine significantly 
improved V ̇O2peak during a subsequent incremental cycling 
test (Wang et al. 2024). Importantly, these gains were greater 
than those registered after eupnoea (i.e., normal breathing 
and unloaded cycling) and dry static breath-holds (i.e., 
no unloaded cycling), yet these were comparable to the 
improvements seen when dynamic and static breath-holds 
were combined with face immersion (Table 1).

In summary, current evidence does not definitively sup-
port or refute the effectiveness of breath-holding as a prim-
ing strategy, highlighting the need for additional research. 
Of notable interest, however, is that most studies reporting 
favourable outcomes employed experimental designs with 
greater number of breath-holds (≥ 5 repetitions), coupled 
with physical exercise and/or face immersion (Table 1); 
combinations known to augment hypoxaemic and hyper-
capnic stress. Ergo, future research should focus on explor-
ing these combinations further and pursue to elucidate the 
underlying mechanisms through which these may act to 
influence exercise performance. More importantly, given 
the impact of placebo and nocebo on exercise performance 
(Hurst et al. 2020; Beedie et al. 2018), it is essential for 
future research to incorporate placebo-controlled trial(s) into 
their experimental designs. This approach would allow to 
more adequately evaluate the efficacy of breath-holding as a 
priming strategy, clarifying whether performance improve-
ments arise from the intervention itself or from psychobio-
logical responses to perceived beneficial interventions (pla-
cebo) or adverse expectations (nocebo).

Practical applications and challenges

The potential utility of breath-holding as a priming strategy 
for acute performance optimisation is propitious, yet con-
structing a potent protocol, and administering it effectively 
is proving more complex than initially thought, with several 
aspects necessitating careful rumination. Accordingly, the 
next section will outline factors that should be taken into 
consideration when devising breath-holding protocols for 
athletic activities.

Structure

A breath-holding protocol comprises of eight distinct parts, 
each requiring careful consideration, as they will collec-
tively determine the volume and duration of the interven-
tion (Fig. 2). These consists of the: (i) type of breath-hold-
ing (i.e., static or dynamic), (ii) intensity (i.e., maximal or 
submaximal), (iii) pre-breath-hold breathing protocol (i.e., 
spontaneous breathing, hyperventilation), (iv) lung volume 
at which the attempt is performed (i.e., functional residual 
capacity, total lung capacity, residual volume), (v) number 
of attempts (i.e., single or serial), (vi) recovery time between 
each attempt (e.g., ≤ 120 s), (vii) number of sets, and (viii) 
resting period between each set. Decisions across all lev-
els should be informed by the athletes’ physical capabili-
ties and adjusted based on their responses, as if the protocol 
is, for instance, too intense it may lead to residual fatigue, 
subtly undermining performance. It should be noted, how-
ever, that the effects of different breath-holding practices/
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combinations on performance are unknown, emphasising 
the need for additional research to guide optimal protocol 
design.

Mental fatigue

A seldom-discussed and frequently overlooked component 
within the literature is the impact of breath-holding on men-
tal and psychological strain. Although current evidence 
may advocate for physiologically challenging protocols 
to be implemented, psychological aspects should also be 
considered (e.g., physical/mental exertion and performance 
readiness). To exemplify, Bouten et al. (2020) showed that 
a solitary static breath-hold was rated more favourably in 
terms of perceived exertion and performance readiness than 
a single dynamic breath-hold or a series of repeated breath-
holds (i.e., 5–6 bouts). Despite being auspicious, when 
introduced after a 10-min warm-up, it failed to improve 
subsequent performance. Likewise, compared with control, 
when looking at the split times of the 4-km time-trial in 
Sperlich et al. (2015) study, cyclists lost 7 s during their 
first kilometre, indicating that repeated breath-holding may 
have induced a degree of fatigue. It is, therefore, evident that 
when devising breath-holding protocols, one must carefully 

weigh physiological and psychological factors, as prescrib-
ing overly strenuous protocols could adversely affect endur-
ance performance, while excessively weak ones may offer 
no discernible effects.

Warm‑up routines and breath‑holding

Warming-up prior to a competitive exercise bout is a 
widely accepted practice in the modern sporting environ-
ment; acknowledged as essential for optimising performance 
(McGowan et al. 2015). Both passive and active warm-up 
routines can evoke temperature, metabolic, neural and 
psychology-related effects, including increased anaerobic 
metabolism, improved oxygen uptake kinetics and post-
activation potentiation (Sale 2002; Gray and Nimmo 2001; 
Pearce et al. 2012; Poole and Jones 2012). Accordingly, 
breath-holding should not be viewed as a replacement to 
traditional warm-up routines; rather, it should be explored 
as a prospective adjunct to these. In support of this, emerg-
ing evidence indicate positive performance outcomes when 
breath-holding was incorporated either before (Bourdas and 
Geladas 2021; Christoulas et al. 2024), after (Robertson 
et al. 2020; Barlow et al. 2024), or even during (Wendi et al. 
2023; Wang et al. 2024) their respective warm-up regimens. 

Fig. 2  Schematic representation 
illustrating the eight distinct 
layers that constitute a breath-
holding protocol
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These findings signify the potential use of breath-holding 
as a supplementary tool in optimising athletic performance. 
From a practical standpoint, however, dry dynamic breath-
holds, may be more feasible for athletes to incorporate into 
their warm-up routines due to their simplicity and minimal 
equipment needs, making them easier to adapt in a variety 
of exercise settings.

Other situational factors

While breath-holding is seemingly easy to introduce prior to 
an endurance activity, since it does not require access to any 
specialised equipment, the question remains whether it can 
seamlessly be integrated into real-world sporting environ-
ments. In this regard, the nature of the existing warm-up rou-
tine (e.g., format, duration, intensity), type of event that fol-
lows (i.e., training or competition) as well as any constrains 
imposed by the competition (i.e., time available for warm-
up, time-interval between warm-up and competition) are 
additional elements that need to be factored in when devis-
ing and prescribing breath-holding protocols. For example, 
the timing of the breath-holding intervention relative to the 
event is crucial, as a significant time delay between these 
may negate any potential effects. Altogether, emphasising 
the need for adaptable and context-specific approaches to 
integrating breath-holding into athletic preparation.

Long‑term effects of breath‑hold training

The hypoxaemic hypercapnic nature of breath-holding, 
along with its associated physiological responses—such as 
the transient increases in EPO—as well as the long-term 
physiological and psychological adaptations derived from 

chronic engagement in breath-hold-related activities (Elia 
et al. 2021c), have led researchers to investigate whether 
breath-hold training could serve as a viable alternative train-
ing modality for performance optimisation (Lemaitre et al. 
2010). In accordance, the following section will offer an 
overview of the long-term effects of breath-hold training, 
its potential application(s) and, where possible, its impact 
on athletic performance.

Haematology

Breath-holding performed in a serial manner and inter-
spersed with short periods of normoxic breathing (i.e., 
2-min) has been shown to transiently elevate EPO concentra-
tions (see Sect. 2.2.2.). Given the pivotal role of EPO in the 
process of erythropoiesis (Jelkmann 1992; Elliott 2008), and 
the strong relationship between t-Hbmass and VȮ2max (Sawka 
et al. 2000; Saunders et al. 2013), several studies have sought 
to elucidate the long-term effects of breath-hold training on 
haematology (Table 2).

While some studies have documented responses sugges-
tive of active erythropoiesis (i.e., increases in reticulocytes, 
iron levels and reductions in ferritin) (Engan et al. 2013; 
Elia et al. 2021a), none have yet revealed discernible differ-
ences in red blood cell count at rest (Elia et al. 2021a; Yang 
et al. 2022; Astolfi et al. 2022), nor t-Hbmass (Astolfi et al. 
2022; Bouten et al. 2022). However, the training regimen 
incorporated varied significantly across these studies [i.e., 
breath-holding protocol (static and/or dynamic), number of 
repetitions per session (5–10), number of sessions per week 
(4–7 days), and total training period (2–22 weeks)], pre-
cluding direct comparisons to be made. Yet it is noteworthy 
that all studies failing to record improvements in EPO and 
reticulocytes shared a common feature, that is the degree of 

Table 2  The effect of breath-hold training on haematology and spleen volume
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desaturation attained by their subjects [85 ± 6%, Elia et al. 
(2019a); 84 ± 11%, Fernandez et al. (2019); 82 ± 7%, Bouten 
et al. (2022)], which was appreciably lower than in studies 
reporting favourable outcomes [73 ± 11%, de Bruijn et al. 
(2008); 73 ± 30%, Engan et al. (2013); 62 ± 10%, Elia et al. 
(2019a)]. Taken together, this retrospective analysis may 
suggest that the hypoxaemic-hypercapnic dose (i.e., expo-
sure time and the degree of desaturation) most likely was 
inadequate to actuate erythropoiesis.

This supposition is partially supported by findings from 
intermittent hypoxic training studies (Gore et  al. 2006; 
Wojan et al. 2021). For example, exposure to simulated alti-
tudes of 4000–5500 m for 3 h per day, 5 days per week, 
led to a significant increase in EPO concentrations [(pre) 
15.4 ± 8 mlU/L vs. (post) 31.3 ± 5.9 mlU/L], yet these eleva-
tions did not translate into measurable improvements in red 
cell volume or t-Hbmass (Gore et al. 2006). These findings 
infer that a substantially greater hypoxaemic dose is neces-
sary to effectively stimulate erythropoiesis, which may help 
explain the lack of observed changes in red blood cell count 
and t-Hbmass in breath-hold training studies.

Skeletal muscle capillarisation

Perhaps one of the least explored areas of breath-hold div-
ing physiology is the skeletal muscle phenotypes of diving 
populations, with only a limited number of studies having 
delved into these using established wet-lab techniques (Bae 
et al. 2003; Park et al. 2005; Kjeld et al. 2018; Elia et al. 
2019b). Interestingly competitive divers exhibited a higher 
capillary density, an increased capillary-to-fibre ratio, and 
a lower diffusion distance and sharing factor compared to 
matched non-diving cohorts (Elia et al. 2019b) (Fig. 1). 
These findings suggest that long-term breath-hold training 
may improve blood-to-tissue exchange capacity (Richardson 
et al. 1994; Saltin 1985). In part support of this conjecture 
is that hypoxia and muscle recruitment, particularly when 
combined, are evinced to serve a crucial role in the regula-
tion and expression of vascular endothelial growth factor 
(VEGF) (Breen et al. 1996; Gustafsson and Sundberg 2000; 
Vogt et al. 2001), and consequently, the initiation of cap-
illary neo-formation and angiogenesis (Arany et al. 2008; 
Desplanches et al. 1993; Kon et al. 2014; Terrados et al. 
1990). It is conceivable therefore that the greater capillari-
sation noted in diving populations may be ascribed to their 
habitual activities, which involve frequent and repeated 
bouts of static and dynamic breath-holds.

Ceteris paribus, a greater capillary supply will improve 
the diffusive exchange of oxygen for oxidative phosphoryla-
tion, adenosine triphosphate re-synthesis, and the removal 
of metabolic waste products (e.g., carbon dioxide, ammo-
nia, lactate) due to a greater capillary surface area in skel-
etal muscle and prolonged erythrocyte transit time (Krogh 

1919; Andersen and Saltin 1985; Saltin 1985; Richardson 
et al. 1993, 1994, 1999). These combined effects can lead 
to improved muscular work rate, delay the onset of skeletal 
muscle fatigue, and ultimately extend time to task failure. 
Indeed, there is a large body of evidence demonstrating 
a strong link between capillarisation and exercise perfor-
mance, with measures of capillary density positively cor-
relating with training status, V̇O2max, ventilatory threshold 
and critical power (Hermansen and Wachtlova 1971; Ingjer 
1979; Robbins et al. 2009; Mitchell et al. 2018). Thence, if 
long-term breath-hold training effectively improves capil-
larisation, it could be appealing to athletic populations.

Psychological resilience

A well-known aspect of breath-hold training is that it accen-
tuates the magnitude of the diving response (see review by 
Elia et al. 2021c); however, a less-recognised benefit is its 
capacity to also improve psychological resilience (Rigg et al. 
1974; Schagatay et al. 2000; Alkan and Akis 2013; Bourdas 
and Geladas 2024). Studies using cross-over designs with 
both trained and untrained subjects have shown that breath-
hold divers are able to suppress their respiratory urges and 
extend their breath-holds far beyond their physiological 
breaking points (Bourdas and Geladas 2024). In contrast, 
untrained individuals tend to terminate their attempts at or 
near this point, suggesting a heightened capacity for stoi-
cism among the trained divers. Furthermore, breath-hold 
divers exhibit greater resistance to stress, higher self-confi-
dence, and lower negative affectivity (Alkan and Akis 2013). 
This ability to endure significant discomfort and persevere 
through mentally and physically challenging situations is 
essential for cultivating mental toughness—a trait strongly 
linked to success in sports [see review by Crust and Azadi 
(2010)]. This psychological construct is considered benefi-
cial for competitive athletes (Crust and Clough 2005; Guc-
ciardi et al. 2008; Connaughton et al. 2008), who frequently 
must push through both physical and psychological barriers 
during prolonged exertion (Crust and Azadi 2010). As such, 
breath-hold exercises could be propitious as a mental train-
ing strategy for developing and nurturing mental toughness 
in athletes.

Exercise performance

It is well established that long-term breath-hold training 
leads to significant improvements in breath-hold perfor-
mance (Elia et al. 2021a; Engan et al. 2013; Schagatay 
et al. 2000; Bourdas and Geladas 2021; Joulia et al. 2003), 
yet there is a paucity of research on its longitudinal effects 
on exercise performance (Bouten et al. 2022; Bourdas and 
Geladas 2021; Joulia et al. 2003). In particular, studies 
involving non-divers have shown that neither two or six 
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weeks of daily dry static breath-holding (i.e., one set of five 
maximal attempts, each separated by a 2-min rest period), 
nor three months of simulated dynamic breath-hold train-
ing performed three times per week (i.e., repetition of 20 s 
breath-holds separated by 40 s of breathing room air dur-
ing a 1-h steady state cycling exercise at 30% of V̇O2max) 
were effective in improving exercise performance [i.e., V̇
O2max and ventilatory threshold (Joulia et al. 2003); time to 
exhaustion test with intensity corresponding to 150% of PPO 
(Bourdas and Geladas 2021); 3-km cycling time-trial and V̇
O2peak (Bouten et al. 2022)]. However, since none of these 
studies tracked breath-hold durations and/or desaturation 
levels across the training period, it remains unclear whether 
these results reflect the ineffectiveness of breath-holding as a 
hypoxic training modality, or if the hypoxaemic-hypercapnic 
dose was simply insufficient.

An additional method of breath-hold training that has 
gained interest in recent years is voluntary hypoventilation. 
Incorporating breath-holding into regular training sessions 
through voluntary hypoventilation has shown potential to 
improve athletic performance (Trincat et al. 2017; Karaula 
et al. 2016; Lavin et al. 2015; Woorons et al. 2016). This 
technique typically involves the athlete exhaling to a pre-
determined pulmonary volume (e.g., near functional resid-
ual capacity) and holding their breath for a set duration 
[e.g., 4–8 s; Woorons et al. (2020); Woorons et al. (2019); 
Woorons et al. (2008)], specific distance [e.g., 40-m sprint, 
Fornasier-Santos et al. (2018); 15-m, Trincat et al. (2017) 
or 25-m, Woorons et al. (2016) swim front crawl sprint] or 
until a strong urge to breathe is felt (Lavin et al. 2015) while 
continuing to exercise. Thenceforth, the athlete exhales the 
remaining air and undergoes a brief recovery period whilst 
breathing ad libitum [30 s, Fornasier-Santos et al. (2018); 
16 s, Woorons et al. (2020); 24 s, Lapointe et al. (2020)], 
before repeating the exhale-hold cycle. This combination 
of repeated-sprint training with short bouts of end-expir-
atory breath-holding, similarly to dynamic breath-holds 
(Joulia et al. 2003; Elia et al. 2021b), is effective in induc-
ing hypoxaemic (~ < 88%) and hypercapnic stress (Yama-
moto et al. 1987, 1988; Dempsey and Wagner 1999; Find-
ley et al. 1983). Over time, this training method appears 
effective in improving swimming performance [twice 
per week for 5-weeks; Woorons et  al. (2016)], running 
economy [three times per week for 4-weeks; Lavin et al. 
(2015)] and repeated-sprint ability [six sessions performed 
over a 2-week period; Trincat et al. (2017)]. While the pre-
cise mechanism(s) driving these improvements remain(s) 
unclear, the authors have attributed them to an enhanced 
buffering capacity and pH regulation, and to a better oxygen 
utilisation in fast-twitch muscle fibres (Bishop et al. 2011).

Safety and adverse effects

It is imperative that practitioners are well-versed with the 
inherent risks of this training practice. Notably, prolonged 
breath-holding may lead to a hypoxic blackout (i.e., loss 
of consciousness) and, depending on whether this occurs 
under land- or water-based activities, it can lead to injury 
(e.g., fall-related), drowning and even be fatal. It is, thus, 
paramount that stringent safety measures are implemented 
when breath-hold-related activities are practiced. Spe-
cifically, breath-holding must never be carried out without 
direct supervision and, where possible, pulse oximeters1 
should be used to monitor the oxygen levels of the apnoeist. 
Also, it is crucial that a safety threshold is established, and if 
this level is reached, supervisors must promptly instruct the 
apnoeist to abort their attempt and resume normal breathing. 
Incorporating these rather simple but essential measures will 
aid towards mitigating any adverse events.

A comprehensive understanding of factors that could also 
potentiate the risk of suffering from a hypoxic blackout is 
also key for ensuring the safety and well-being of apnoeists. 
In this regard, evidence suggest that breath-holding activities 
incorporating an exercise component [i.e., dynamic breath-
holds; Lindholm (2007); Elia et al. (2021b)], pre-breath-hold 
hyperventilation (Elia et al. 2024b; Craig 1976, 1961), exer-
cise (Lindholm and Gennser 2005) and fasting (Elia et al. 
2022a, 2024b) have all been shown to exacerbate this risk; 
especially over a series of repeated attempts. Therefore, it 
is important that these risk factors are not overlooked but 
rather be carefully considered when designing, prescribing, 
and/or engaging in breath-hold-related activities.

Health implications

Information pertaining to the possible health implications 
associated with long-term engagement in breath-hold-
related activities is currently limited [see review by Elia et al. 
(2021c)]. Preliminary evidence suggests that while sustained 
breath-holding may pose ramifications for renal health (Oh 
et al. 2017), it appears to have no adverse effects on cardiac 
health or vascular integrity (Zelenkova and Chomahidze 2016; 
Tanaka et al. 2016; Doerner et al. 2018). Conversely, the long-
term effects on bone tissue (Hwang et al. 2006; Kjeld et al. 
2018; Seo et al. 2018), the central nervous system (Doerner 
et al. 2018; Kohshi et al. 2014; Potkin and Uzsler 2006), and 
neurocognition function (Ridgway and McFarland 2006; 

1 Low-cost pulse oximeters have become increasingly available in the 
market; however, their accuracy is often not validated. Therefore, it 
is recommended to use units cleared by the International Organisa-
tion for Standardisation, which have been tested and certified to be 
accurate to root mean square error of < 3% at oxygen saturation levels 
between 70 and 100% (see review by Shi et al. 2022).



European Journal of Applied Physiology 

Ratmanova et al. 2016; Steinberg and Doppelmayr 2019; 
Billaut et al. 2018; Allinger et al. 2024a; Elia et al. 2022b, 
2024a) remain less clear. This limited body of research high-
lights the need for further cross-sectional and longitudinal 
studies aimed at deepening our understanding of the poten-
tial maladaptation(s) associated with long-term breath-hold 
training.

Conclusion

This review provided (i) an update of the physiological 
responses associated with acute and long-term engagement in 
breath-hold-related activities relevant to athletic performance, 
(ii) delved into breath-hold priming strategies and training 
regimens used to improve performance, (iii) offered guid-
ance on key factors to consider when designing and admin-
istering breath-hold-related activities, and (iv) outlined how 
breath-holding can safely and effectively be applied in athletic 
pursuits. The current evidence suggests that whilst the poten-
tial application of breath-holding may be propitious, further 
placebo-controlled studies are needed to thoroughly assess its 
efficacy as a priming strategy. In addition, it is evident that 
developing an effective protocol (i.e., type of breath-holding, 
load, repetitions, duration etc.) and administering it success-
fully is more complex than initially thought, with several 
factors requiring careful consideration and highlighting the 
need for adaptable, and context-specific approaches to inte-
grating breath-holding into athletic preparation. Finally, while 
dynamic breath-hold training shows the greatest potential as 
a performance optimisation strategy, additional research is 
needed to establish the optimal training protocol, including 
the appropriate hypoxaemic-hypercapnic dose and duration.
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