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1   |   INTRODUCTION

Higher physical activity and fitness levels bring many 
health benefits and prevent cardiometabolic diseases 

(Blair et  al.,  2001; Reiner et  al.,  2013). Unfortunately, 
one third of the population fails to meet the physical ac-
tivity recommendations established by the World Health 
Organization (WHO, 2024a).
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Abstract
This study investigated body composition, cardiorespiratory, and neuromuscular 
adaptations induced by three high intensity trainings easy to fit into daily routine. 
Thirty-seven adults participated in one of the following 8-week interventions: vig-
orous intensity continuous training (VICT; 28 min at 70% of peak oxygen uptake 
[VO2peak]), long interval high intensity interval training (LI-HIIT; 6 × 2 min at 
85% VO2peak), or short interval HIIT (SI-HIIT; 12 × 30 s at 125% maximal power 
output). Heart rate (HR) and rating of perceived exertion (RPE) were meas-
ured during sessions. Pre- and post-intervention assessments included fat and 
lean mass, cardiopulmonary exercise testing, knee extensors maximal isometric 
torque, voluntary activation, and endurance during a submaximal contraction. 
Compared to SI-HIIT and VICT, LI-HIIT sessions were characterized by a shorter 
duration, a similar time spent above 90% HRmax, but a higher RPE (p < 0.05). 
VO2peak and muscle endurance increased respectively by 14% and 12%, while 
knee extensors torque, voluntary activation, and lean mass increased to a lesser 
extent (1%–3%) after the interventions (ANOVA time-effect, all p < 0.05). There 
was no significant difference between the modalities (intervention × time inter-
action, all p > 0.05). In conclusion, comparable body composition, cardiorespira-
tory, and neuromuscular adaptations were induced by the three high intensity 
training protocols, while RPE was higher during LI-HIIT sessions.
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To overcome the most cited barrier to engaging in phys-
ical activity, namely the lack of time (Koh et al., 2022), and 
induce a faster increase in physical fitness, higher inten-
sity training has been proposed as a time-efficient alter-
native to moderate intensity continuous training (MICT) 
in healthy adults and patients (Burgomaster et al., 2008; 
Hannan et  al.,  2018; Herrod et  al.,  2021; Maillard 
et al., 2016; Sultana et al., 2019; Weston et al., 2014). Two 
main forms of high intensity training exist: high intensity 
interval training (HIIT) and vigorous intensity continuous 
training (VICT).

HIIT consists of either long intervals (usually 2–4 min; 
LI-HIIT), generally performed at vigorous to near maximal 
intensities (American College of Sports Medicine, 2018), 
or short intervals (6–60 s) (MacInnis & Gibala,  2017; 
Weston et  al.,  2014). The latter are often mentioned as 
sprint interval training (SIT) and refer to either repeat-
ing Wingate tests or short bouts of all-out exercise (Sloth 
et  al.,  2013). However, this type of effort may be barely 
achievable and poorly tolerated in the general population. 
Therefore, new forms of short interval HIIT (SI-HIIT) 
have been developed with intensities more adapted for in-
active or moderately active subjects (Astorino et al., 2013; 
Bayati et al., 2011; de Oliveira-Nunes et al., 2021). VICT 
is another form of high intensity aerobic training that 
was primarily proposed for healthy individuals (Islam 
et al., 2019; Myrkos et al., 2023), but also for patients with 
breast cancer and overweight subjects (Kong et al., 2016; 
Li et al., 2021; Maginador et al., 2020). VICT was shown 
to induce greater improvements in peak oxygen uptake 
(VO2peak) than MICT of equivalent volume and could be 
a more time-efficient modality than MICT as session du-
ration was shorter for VICT (Gormley et al., 2008).

Exertion perceived during exercise was identified 
as one of the factors predicting in-task affective valence 
(Farias-Junior et al., 2020) which could impact adoption 
and adherence to exercise, mainly in inactive subjects 
(Biddle & Batterham,  2015; Williams,  2008). Rating of 
perceived exertion (RPE) was measured during single ses-
sions of SI-HIIT, LI-HIIT, and MICT, and a lower RPE was 
reported during MICT and SI-HIIT compared to LI-HIIT 
(Naves et al., 2019). Some have raised concern that VICT 
may be too strenuous for individuals less familiar with 
physical activity, making interval training a more feasi-
ble alternative (Jung et al., 2014; Maginador et al., 2020). 
However, to the best of our knowledge, RPE during VICT 
was not yet compared to SI-HIIT and LI-HIIT during in-
terventions of several weeks. In addition, although there 
is abundant literature comparing the effectiveness of HIIT 
and MICT on the main health-related fitness components 
(i.e., cardiorespiratory fitness, body composition, mus-
cle strength, and endurance) (Gibala et al., 2012; Hwang 

et al., 2019; Sultana et al., 2019), no study directly com-
pared the effects of SI-HIIT, LI-HIIT, and VICT.

To improve health-related fitness and facilitate physi-
cal activity participation in people lacking time, it appears 
important to identify the most tolerable (i.e., inducing 
lower RPE) and efficient exercise interventions, including 
different HIIT regimes and VICT. Therefore, this study 
aims to compare the effects of VICT, SI-HIIT, and LI-HIIT 
over 8 weeks on the main components of health-related 
fitness, but also the physiological responses (i.e., heart 
rate and time spent in different intensity zones) and per-
ceived exertion during training sessions. We hypothesized 
that the time spent at vigorous to near-maximal intensity 
attained during the 3 modalities will induce compara-
ble cardiorespiratory adaptations, while neuromuscular 
adaptations could differ due to different metabolic dis-
turbances and neuromuscular load induced by the 3 mo-
dalities (Buchheit & Laursen,  2013a, 2013b). Regarding 
RPE during sessions, we expected it to be lower during SI-
HIIT, compared to LI-HIIT and VICT, due to the shorter 
bouts of exercise at high intensity.

2   |   MATERIALS AND METHODS

2.1  |  Participants

The protocol of the study was approved by the Erasmus 
hospital (Brussels, Belgium) Ethical Committee (refer-
ence: B406201836213). All the participants received oral 
and written information regarding the protocol and signed 
a written informed consent.

Participants were recruited through local advertise-
ment, social media, and by word of mouth on the uni-
versity campus. To be included, participants needed to 
be between 18 and 50 years old, inactive to moderately 
active at most (i.e., below or within the World Health 
Organization physical activity recommendations; 150–
300 min of moderate intensity, 75–150 min of vigorous 
intensity physical activity, or an equivalent combination 
of both) (WHO, 2024b), and not be involved in any struc-
tured endurance or strength training program in the last 
6 months. Individuals with a condition limiting participa-
tion in maximal physical tests and training were excluded. 
Before inclusion, participants completed the global phys-
ical activity questionnaire (WHO,  2024c) to ensure they 
met inclusion criteria regarding physical activity par-
ticipation. After inclusion, participants were randomly 
assigned to one of the 3 exercise interventions, namely 
LI-HIIT, SI-HIIT, or VICT, using a stratified randomiza-
tion by sex (two strata: male and female). Initially, 58 par-
ticipants were included in the study, but 18 discontinued 
the intervention, mostly due to a health issue unrelated to 
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their participation in the study (n = 12) or schedule incom-
patibilities (n = 6), and 3 were lost to follow-up. The final 
sample comprised 12 participants in the LI-HIIT group 
(7 females, 24 ± 5 years), 13 in the SI-HIIT group (7 fe-
males, 23 ± 3 years), and 12 in the VICT group (6 females, 
24 ± 3 years). One participant from the VICT group had 
to be excluded from the analysis of endurance time due 
to muscle cramps during the post-intervention session. A 
flowchart is presented in Figure 1 and participants' char-
acteristics (male/female ratio, age, and BMI) and partici-
pation in vigorous and moderate physical activities, based 

on the global physical activity questionnaire filled in at 
inclusion, are presented in Table 1.

2.2  |  Study design

The study design is represented in Figure  2. Before and 
after the exercise interventions, evaluations were con-
ducted over 2 sessions interspaced by 48 h. The first 
session was dedicated to the assessment of body com-
position and cardiorespiratory fitness through classical 

F I G U R E  1   Study flowchart. CRF, cardiorespiratory fitness; LI-HIIT, long interval high intensity interval training; SI-HIIT, short interval 
high intensity interval training; VICT, vigorous intensity continuous training.

• Analyzed for CRF, body composition, 
neuromuscular parameters (n = 12)

Allocation

Assessed for eligibility and 
recruited (n = 58)

LI-HIIT
(n = 18)

SI-HIIT
(n = 21)

• Discontinued intervention (n = 6)
• Unrelated health issue (n = 4)
• Personal reasons (n = 2)

Statistical Analysis

• Lost to follow-up (n = 1)
• Discontinued intervention (n = 7)

• Unrelated health issue (n = 4)
• Personal reasons (n = 3)

• Analyzed for CRF, body composition, 
neuromuscular parameters (n = 13)

Enrollment

VICT
(n = 19)

Follow-up

• Lost to follow-up (n = 2)
• Discontinued intervention (n = 5)

• Unrelated health issue (n = 4)
• Personal reasons (n = 1)

• Analyzed for CRF, body composition, 
neuromuscular parameters (n = 12), 
except for endurance time (n = 11, one 
subject excluded due to muscle cramps)

T A B L E  1   Characteristics and recreational physical activity of the subjects at inclusion.

Group Ratio ♂/♀ Age (yrs) BMI (kg/m2)
Vigorous PA 
(min/week)

Moderate PA 
(min/week)

VICT 6/6 23.5 ± 2.7 22.9 ± 3.5 0 [0, 30] 10 [0, 112]

LI-HIIT 5/7 24.1 ± 4.9 26.3 ± 5.0a 0 [0, 90] 45 [0, 105]

SI-HIIT 6/7 22.6 ± 2.8 21.9 ± 2.0 0 [0, 105] 90 [0, 135]

Note: Data presented as mean ± standard deviation or median [25th, 75th percentile] depending on distribution. Participation in vigorous and moderate 
intensity physical activities did not differ between groups (Kruskal–Wallis test, p = 0.527).
Abbreviations: BMI, body mass index; LI-HIIT, long interval high intensity interval training; PA, physical activity; SI-HIIT, short interval high intensity 
interval training; VICT, vigorous intensity continuous training.
aBMI was slightly higher in the LI-HIIT group compared to the SI-HIIT group (post-hoc test, p < 0.05).
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cardiopulmonary exercise testing (CPET). The second 
session was dedicated to the recording of neuromuscular 
parameters.

2.3  |  Body composition assessment

After an overnight fast, total and segmental body compo-
sition was measured through Dual-energy X-ray absorp-
tiometry (DXA, Lunar Prodigy, GE Healthcare, USA) 
and analyzed using the enCORE software (version 15.0) 
(Toombs et al., 2012).

2.4  |  Cardiopulmonary exercise testing

Subjects took part in an incremental CPET on an elec-
trically braked stationary bike (Ergoselect 100, Ergoline 
GmbH, Germany) according to standard recommenda-
tions (Wasserman et al., 1973). The exercise protocol in-
cluded a 3-min warm-up phase at 20 W for females and 
30 W for males, followed by workload increments of 15 W/
min for females and 20 W/min for males until volitional ex-
haustion. Throughout the test, measures of oxygen uptake 
(VO2), ventilation, and carbon dioxide production were 
collected breath by breath using a tightly fitted oro-nasal 
mask connected to a cardiopulmonary exercise system 

(Ergocard, Medisoft, Belgium) calibrated with room and 
standardized gas. Heart rate (HR) was monitored through 
a 12-lead EKG. The test was considered maximal when 
two of the following criteria were met: [1] the participant 
reached a plateau of VO2 (less than 100 mL/min of in-
crease in VO2 with a further increase in workload), [2] a 
respiratory exchange ratio over 1.15, [3] achievement of 
age-predicted HRmax (220 – age), [4] inability to maintain 
pedaling frequency above 50 rpm. Since a plateau of VO2 
was not observed in most subjects, the VO2peak was taken 
as the highest level of VO2 reached during the last fully 
achieved stage, and maximal power output (Wmax) was the 
corresponding workload. The first ventilatory threshold 
(VT1) was determined using the V-slope and the ventila-
tory equivalent method (Reinhard et al., 1979; Wasserman 
et al., 1973) by two independent investigators.

2.5  |  Neuromuscular assessment

For the neuromuscular recordings, subjects were sitting 
on an adjustable chair with their back supported by the 
chair and with the hip and knee angles at 100°. A force 
transducer (linear range, 0–2500 N; U2000 load cell, 
Maywood Instruments Ltd., Basingstoke, UK) was fixed 
to the front of the chair and attached to the right leg by a 
Velcro strap (2 cm above the lateral malleolus) to measure 

F I G U R E  2   Study design. EMG, Electromyographic recording; LI-HIIT, long interval high intensity interval training; SI-HIIT, short 
interval high intensity interval training; VO2peak, peak oxygen uptake; VICT, vigorous intensity continuous training; Wmax, maximal power 
output.
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the isometric torque produced by the knee extensors 
(Klass et  al.,  2016). Electromyographic activities (EMG) 
were recorded from the rectus femoris, vastus medialis, 
vastus lateralis, and biceps femoris using self-adhesive 
electrodes (Red Dot, 3 M, Minnesota, USA). To guaran-
tee comparable recording circumstances during pre- and 
post-intervention sessions, the placement of the EMG 
electrodes was recorded during the first session. EMG sig-
nals were amplified (×1000) and filtered (10 Hz – 1 kHz) 
by a custom-made differential amplifier. Electrical stimu-
lation delivered to the femoral nerve by a constant cur-
rent stimulator (DS7AH Digitimer, Welwyn Garden City, 
UK; pulse duration 200-μs) and self-adhesive electrodes 
was used to assess voluntary activation and muscle con-
tractile properties. The precise location of the stimulation 
was determined at rest using weak electrical stimulation. 
Stimulation intensity was then gradually increased to 
attain maximal twitch torque and set 30% above that in-
tensity to ensure maximal muscle activation. Torque and 
EMG signals were acquired on a computer at a sampling 
rate of 2 kHz with a data-acquisition system (Model MP 
150, Biopac Systems, Santa Barbara, CA, USA) and ana-
lyzed off-line with associated AcqKnowledge 4.1 software.

During the recording sessions, participants performed 
five 3-s isometric maximal voluntary contractions (MVC), 
interspaced by a 3-min rest interval; the first two as famil-
iarization, and the last 3 for recordings. MVC torque and 
associated average value of the rectified EMG (aEMG) of 
vastus medialis, vastus lateralis, rectus femoris, and bi-
ceps femoris were determined for a 500-ms period during 
the plateau of the 3 MVC. Values obtained from the two 
attempts that produced the highest MVC torque were 
averaged.

Voluntary activation was assessed using the interpo-
lated twitch technique with paired supramaximal elec-
trical stimuli delivered at 10-ms intervals during the 
MVC plateau and immediately after the MVC (Klass 
et al., 2016). The superimposed torque was defined as the 
difference between the superimposed peak torque and the 
MVC torque prior to the stimulation, while the resting 
twitch torque was defined as the difference between the 
peak twitch torque and the baseline. Voluntary activation 
level was calculated according to the following equation: 
(1 – superimposed torque/resting twitch torque) × 100 
(Shield & Zhou, 2004).

Finally, muscle endurance (i.e., the capacity to sustain 
a given percentage of MVC torque over time) (American 
College of Sports Medicine,  2018) was measured after a 
10-min rest period. Participants had to maintain a contrac-
tion equivalent to 30% MVC for as long as possible with 
a visual feedback of the target torque (Martinez-Valdes 
et al., 2017). Endurance time was measured from the be-
ginning of the contraction till the moment the subject's 

torque decreased by 10% below the target torque for at 
least 5 s.

2.6  |  Exercise interventions

The 3 interventions lasted 8 weeks at a frequency of 3 ses-
sions per week. Participants were all working or studying 
on the campus and performed the training sessions on 
stationary bikes accessible during the opening hours of 
our building. They were requested and reminded several 
times to keep their dietary and other physical activity hab-
its unchanged during the intervention. For prescribing 
exercise intensity, various methods exist. Domain-based 
exercise intensity prescription (Inglis et al., 2024) or de-
termining intensities based on the critical power (Lipková 
et  al.,  2022) better accounts for individual differences 
in metabolic and physiological responses to exercise. 
However, these methods require several testing sessions, 
which are difficult to implement in daily practice, par-
ticularly for busy inactive to moderately active individu-
als. Given our objective to align exercise prescription with 
real-world feasibility, we opted to determine training loads 
as a percentage of VO2peak. This widely used approach 
provides a practical and accessible means of prescribing 
exercise intensity while still ensuring a physiologically 
relevant stimulus (Taylor et al., 2019).

The stationary bikes were connected to the Ergoline 
Rehab System (ERS.2 software, version 1.07, Ergoline 
GmbH, Germany). This system allows automatic and 
instantaneous switching between pre-encoded training 
workloads based on participants' performance during 
CPET. All protocols started with a 3-min warm-up at a 
load of 50 to 75 W and ended with a 2-min cool down. 
The VICT protocol consisted of cycling 28 min at a load 
corresponding to 70% of VO2peak, LI-HIIT consisted of 6 
bouts of 2 min at a load corresponding to 85% of VO2peak, 
and SI-HIIT consisted of 12 bouts of 30 s at 125% of Wmax. 
For both modalities, exercise intervals were interspaced 
by 2-min recovery periods at a load equivalent to 50% of 
VO2peak. The conditioning phase of the LI-HIIT and SI-
HIIT lasted, respectively, 22 and 28 min. For all modalities, 
training intensity was increased every week by 2% of the 
load corresponding to VO2peak (Wmax). A progression in 
percentage of Wmax was previously used in studies com-
paring different HIIT regimes (Astorino et  al.,  2013). It 
was chosen because it was easy to implement, was appli-
cable to the 3 modalities, and avoided calculations based 
on VO2 measured during the CPET and changes to  the 
number of intervals or session duration.

Protocols of the 3 interventions were designed to be 
achievable by the target population and to fit in a ~30 min 
time-window. This timeframe was indeed deemed by 
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participants as compatible with their daily routine activ-
ities. Protocols were determined during preliminary ses-
sions carried out on 6 inactive subjects to ensure their 
applicability. During those sessions, based on the inter-
val duration and target intensities fixed for the two HIIT 
protocols (see above), the number of intervals achievable 
during a ~30-min session of LI-HIIT and SI-HIIT was de-
termined. The LI-HIIT session was the most strenuous, 
and 4 out of the 6 subjects could not repeat more than 6 
intervals, leading to the decision to limit the number of 
intervals per session to 6. This was decided to avoid that 
part of the subjects do not complete the exercise session 
as it happened in previous studies (Oliveira et al., 2013). 
Regarding SI-HIIT, all the subjects were able to perform 
12 intervals. VICT duration was aligned with the SI-HIIT 
protocol, and we then confirmed the 6 subjects were able 
to achieve the session.

Since training intensity influences exercise-induced 
adaptations (Buchheit & Laursen,  2013a; MacInnis & 
Gibala, 2017), HR was continuously recorded during ses-
sions using HR sensors provided with the Ergoline Rehab 
System. For the conditioning phase of each session, mean 
and peak HR were extracted from the ERS.2 software, and 
the time spent in different intensity zones, expressed as 
a percentage of the HRmax measured during the CPET 
(i.e., 60%–70%, 70%–80%, 80%–90%, and >90% HRmax), 
was calculated. Immediately after the end of the exercise, 
participants noted the RPE during the session using the 
modified 0–10 Borg scale (Borg, 1982).

2.7  |  Statistical analysis

Normality of the data was controlled using a Shapiro–Wilk 
normality test. Since initial characteristics may influence 
adaptations to exercise, depending on the normality of the 
distribution, a one-way ANOVA or a Kruskal–Wallis test 
was conducted to control for differences in participation 
in vigorous and moderate physical activities, body com-
position, cardiorespiratory, and neuromuscular variables 
between groups at baseline. The same statistical tests were 
used to compare the RPE, mean and peak HR data aver-
aged over all sessions, and the time spent in each intensity 
zone during the 3 interventions. When a significant main 
effect was found, Dunn's or Bonferroni's post hoc tests 
were performed.

When normal distribution of data was verified, a two-
factor ANOVA (time [pre- vs. post-intervention] × inter-
vention [LI-HIIT vs. SI-HIIT vs. VICT]) with repeated 
measures on time was used to analyze training induced 
changes. Effect sizes were reported using partial eta-
squared (partial η2). Values of 0.01, 0.06, and 0.14 corre-
spond respectively to small, medium, and large effects 

(Lakens, 2013). For one variable presenting a non-normal 
distribution (i.e., trunk fat mass), within-group changes 
were tested using the Wilcoxon test. Statistical analysis 
was conducted with Jamovi (version 2.2.5). Considering 
our final total sample size (n = 37), divided into 3 groups 
(VICT, SI-HIIT, LI-HIIT) and 2 repeated measurements in 
each group, with an alpha level of 0.05, and assuming a 
minimal correlation of 0.7 among the repeated measures 
based on a previous study (Scoubeau et al., 2023), our de-
sign was sensitive to detect a moderate effect size (f = 0.25) 
with a power of 0.9 for the interaction between the within 
and the between group factors (Gpower version 3.1.9.6) 
(Faul et al., 2007; Scoubeau et al., 2022).

To assess the contribution of neural changes to the 
improvement in MVC torque, we correlated the percent-
age of change in voluntary activation and aEMG of the 
agonist muscles to the change in MVC torque between 
baseline and post-intervention. In addition, we correlated 
baseline levels of voluntary activation and their percent-
age of change after the interventions to verify if the effect 
of the interventions could be higher in subjects with ini-
tially lower motor output. Depending on the distribution, 
Pearson (rp) or Spearman (rs) correlation coefficients were 
calculated.

3   |   RESULTS

3.1  |  Attendance rate, HR, time spent in 
different intensity zones, and RPE during 
training sessions

Among participants who completed the interventions, 5 
participants (3 in VICT, 1 in SI-HIIT, 1 in LI-HIIT) missed 
1 session, 2 participants (1 in VICT, 1 in SI-HIIT) missed 2 
sessions, and 1 participant (in LI-HIIT) missed 4 sessions. 
Mean attendance was above 98% in all 3 groups.

Table 2 presents the time spent in the different inten-
sity zones during the 3 interventions. The Kruskal–Wallis 
test identified significant differences between interven-
tions for the 70%–80% HRmax (p = 0.040) and the 80%–90% 
HRmax (p = 0.035) zones. The post hoc tests indicated that 
the time spent between 80% and 90% HRmax was signifi-
cantly lower during LI-HIIT compared to VICT (p = 0.030).

As illustrated in Figure 3, a large inter-subject vari-
ability was observed within each session for peak and 
mean HR, expressed as a percentage of HRmax measured 
during the CPET (A and B), and for RPE (C). Within 
each modality, between-session variability was quite 
low for HR, with interquartile ranges for mean and 
peak HR staying respectively between 80%–90% and 
90%–100% of HRmax throughout the intervention for 
the 3 modalities (Figure 3a,b), meaning the progression 
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proposed ensured maintenance of mean and peak HR 
at similar levels all along the interventions. RPE inter-
quartile ranges fluctuated between an effort perceived 
as moderate to very hard (Figure 3c).

Statistical analysis of pooled data from all sessions did 
not show a difference for mean HR (p = 0.28) and peak 
HR (p = 0.62) between the 3 training modalities. In con-
trast, the RPE median value was higher and the min to 
max range was larger during LI-HIIT (median: 6.7, range: 
3.6–8.2) compared to SI-HIIT (median: 5.3, range: 3.9–
7.0; p = 0.047) and VICT (median: 4.8 and range: 3.5–6.7; 
p = 0.025).

3.2  |  Body composition

Values of total and segmental body composition, and sta-
tistical analysis comparing the 3 groups at baseline and 
the effects of the interventions are presented in Table 3. 
No significant difference was found between groups at 
baseline. Total (+1%), leg (+1.5%), and trunk lean mass 
(+2%) were slightly increased (ANOVA time effect, 
all p < 0.01), while total and segmental fat mass did not 
change significantly after interventions (ANOVA time 

effect, all p > 0.05). Whatever the parameter, the statisti-
cal analysis did not reveal any significant intervention by 
time interaction (all p > 0.05).

3.3  |  Cardiorespiratory fitness

Values of the cardiorespiratory parameters and statisti-
cal analysis comparing the 3 groups at baseline, and the 
effects of the interventions are presented in Table 4. At 
baseline, there were no significant differences between 
groups for any of the parameters (all p > 0.05). The in-
terventions improved VO2peak (+14% when expressed 
in L/min and in mL/min/kg of body weight, and +13% 
in mL/min/kg of lean mass), VT1 (+38% in L/min, +33% 
in mL/min/kg of body weight, and +36% in mL/min/kg 
of lean mass), and Wmax (+16%; ANOVA time effect, all 
p < 0.001), while HRmax remained unchanged (ANOVA 
time effect, p = 0.26). No significant intervention by time 
interaction was found for any of the parameters (all 
p > 0.05).

3.4  |  Neuromuscular parameters

Values of the neuromuscular parameters and statistical 
analysis comparing the 3 groups at baseline, and the ef-
fects of the interventions are presented in Table 5. There 
was no significant difference between groups at baseline 
for any of the parameters (all p > 0.05). After the interven-
tions, an increase in endurance time (+12%) and MVC 
torque was observed (+3%), associated with a higher vol-
untary activation (+2%) and agonists aEMG (+10%), while 
biceps femoris aEMG decreased (−12%; ANOVA time ef-
fect, all p < 0.05). Resting twitch torque did not change 
significantly (p = 0.108). No significant intervention by 
time interaction was found for any of the parameters (all 
p > 0.05).

The percentage of change in MVC torque was posi-
tively correlated to the percentage of change in volun-
tary activation (rs = 0.40, p = 0.015) and agonists aEMG 
(rp = 0.52, p = 0.001). The change in voluntary activation 
was negatively correlated with the baseline level of volun-
tary activation (rs = −0.64; p < 0.001).

4   |   DISCUSSION

Since lack of time is the main perceived barrier to physi-
cal activity and higher intensity interventions are known 
to be more efficient in improving physical fitness, the 
aim of the present study was to compare the effective-
ness of 3 high intensity cycling trainings conceived to fit 

T A B L E  2   Time spent in the different intensity zones.

Intensity zone
Time spent 
(min:Sec)

Kruskal–Wallis 
p-value

60%–70% HRmax

VICT 0:37 [0:27, 0:44] 0.604

LI-HIIT 0:31 [0:22, 0:55]

SI-HIIT 0:23 [0:10, 1:08]

70%–80% HRmax

VICT 2:54 [1:07, 4:15] 0.040

LI-HIIT 5:06 [4:11, 6:57]

SI-HIIT 6:51 [1:39, 12:27]

80%–90% HRmax

VICT 19:30 [9:45, 20:58] 0.035

LI-HIIT 11:06 [10:13, 12:31]a

SI-HIIT 14:11 [8:27, 15:40]

>90% HRmax

VICT 4:39 [1:45, 16:44] 0.874

LI-HIIT 4:43 [3:10, 5:56]

SI-HIIT 6:04 [0:14, 12:17]

Note: Time spent in each zone is presented as median [25th, 75th percentile]. 
% HRmax, percentage of maximum heart rate measured during the 
cardiopulmonary exercise test. Bold values indicates p values < 0.05.
Abbreviations: LI-HIIT, long interval high-intensity interval training; SI-
HIIT, short interval high-intensity interval training; VICT, vigorous intensity 
continuous training.
aPost-hoc test p < 0.05 versus VICT.
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easily between other daily activities. Cardiorespiratory 
fitness and muscle endurance were improved after the 
interventions and were accompanied by a small increase 
in lean mass and knee extensors isometric strength. 
Mean and peak HR during sessions, and time spent in 
the different intensity zones (60%–70%, 70%–80%, and 
above 90% of HRmax) were not significantly different be-
tween the 3 modalities, except for a shorter time spent 
between 80% and 90% of HRmax during LI-HIIT com-
pared to VICT. In contrast, despite the shorter session 
duration and time spent between 80% and 90% of HRmax, 
RPE was higher during LI-HIIT compared to both SI-
HIIT and VICT.

4.1  |  Body composition

The absence of change in fat mass after the exercise inter-
vention is in line with the literature on normo-weighted 
subjects (Amatori et al., 2023). The increase in lean mass 
observed in the present study is small, and just above 
the coefficient of variation for lean mass measurement 
by DXA (~1%; Toombs et al., 2012). Its magnitude and 
location (leg and trunk) are, however, consistent with 
the lean mass increase reported by several studies after 
different cycling HIIT (Boutcher et al., 2019; Caparrós-
Manosalva et  al.,  2023; Gillen et  al.,  2013; Heydari 
et al., 2012; Trapp et al., 2008). The predominant effect 

F I G U R E  3   Boxplot of peak HR (a), mean HR (b), and RPE (c) during training sessions. HR, Heart Rate; LI-HIIT, long interval high 
intensity interval training; RPE, rate of perceived exertion; SI-HIIT, short interval high intensity interval training; VICT, vigorous intensity 
continuous training. *Post-hoc test p < 0.05 between LI-HIIT and other interventions.
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on the leg and trunk lean mass is most probably related 
to the main role of leg and trunk muscles in cycling and 
as stabilizers, respectively (Trapp et  al.,  2008). To our 
best knowledge, the effects of LI-HIIT, SI-HIIT, and 

VICT on body composition were never directly com-
pared. A potential explanation for the absence of dif-
ference between the 3 modalities could lie in a similar 
exercise-induced metabolic stress, known to upregulate 

T A B L E  3   Baseline to post-intervention comparison of the body composition components.

Parameters Baseline Post

Between groups 
comparison at 
baseline p-value

ANOVA time 
p-value/η2p

ANOVA 
time × group 
p-value/η2p

Total body weight (kg)

VICT 70.3 ± 12.3 71.0 ± 13.0 0.09 0.585/0.001 0.176/0.054

LI-HIIT 77.9 ± 17.6 77.4 ± 18.5

SI-HIIT 65.9 ± 7.9 65.8 ± 7.7

Total fat mass (kg)

VICT 18.7 ± 10.6 18.8 ± 11.1 0.075 0.064/0.097 0.080/0.138

LI-HIIT 25.9 ± 11.5 24.7 ± 11.4

SI-HIIT 18.0 ± 3.8 17.6 ± 3.8

Total lean mass (kg)

VICT 48.6 ± 8.2 49.3 ± 8.4 0.381 0.002/0.255 0.772/0.015

LI-HIIT 49.9 ± 11.7 50.6 ± 11.9

SI-HIIT 44.8 ± 8.3 45.2 ± 8.1

Leg fat mass (kg)

VICT 8.1 ± 4.6 8.2 ± 4.6 0.110 0.078/0.089 0.112/0.121

LI-HIIT 10.5 ± 3.5 10.1 ± 3.5

SI-HIIT 7.7 ± 1.9 7.6 ± 2.0

Leg lean mass (kg)

VICT 19.4 ± 3.2 19.5 ± 3.2 0.364 0.002/0.261 0.608/0.029

LI-HIIT 19.9 ± 4.2 20.2 ± 4.4

SI-HIIT 17.9 ± 3.2 18.2 ± 3.2

Arm fat mass (kg)

VICT 1.8 ± 0.9 1.8 ± 0.9 0.060 0.543/0.011 0.313/0.066

LI-HIIT 2.6 ± 1.1 2.5 ± 1.2

SI-HIIT 1.9 ± 0.5 1.9 ± 0.6

Arm lean mass (kg)

VICT 5.4 ± 1.5 5.3 ± 1.2 0.651 0.288/0.033 0.556/0.034

LI-HIIT 5.5 ± 1.8 5.5 ± 1.9

SI-HIIT 5.0 ± 1.3 5.0 ± 1.3

Trunk fat mass (kg)

VICT 6.3 [4.2, 8.5] 6.2 [4.6, 7.8] 0.051 N/A N/A

LI-HIIT 9.2 [6.7, 14.9] 9.1 [6.1, 15.4]

SI-HIIT 6.9 [6.0, 9.6] 6.8 [6.3, 9.60]

Trunk lean mass (kg)

VICT 20.7 ± 3.8 21.2 ± 4.1 0.375 0.007/0.194 0.300/0.068

LI-HIIT 21.3 ± 5.4 21.7 ± 5.3

SI-HIIT 18.9 ± 3.5 19.0 ± 3.4

Note: Data presented as mean ± standard deviation or median [25th, 75th percentile] depending on distribution. Bold values indicates p values < 0.05.
Abbreviations: LI-HIIT, long interval high intensity interval training; N/A, not applicable; η2p, partial eta-squared; SI-HIIT, short interval high intensity 
interval training; VICT, vigorous intensity continuous training.
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signaling pathways responsible for muscle hypertrophy 
(Callahan et al., 2021; Wackerhage et al., 2019).

4.2  |  Cardiorespiratory fitness

The statistical analysis revealed no difference between the 
3 modalities regarding the improvement of cardiorespi-
ratory fitness (VO2peak, Wmax, and VT1). Our results are 

consistent with a recent meta-analysis showing that LI-
HIIT and SI-HIIT/SIT were equally effective to improve 
cardiorespiratory fitness (de Oliveira-Nunes et al., 2021). 
However, the authors did not compare the effectiveness of 
SI-HIIT (using near maximal or slightly supramaximal in-
tensities) with Wingate-based or all-out versions of SIT. To 
our knowledge, solely Bayati et al. (2011) assessed cardi-
orespiratory adaptations induced by a Wingate-based SIT 
and a SI-HIIT as in the present study (i.e., 30-s intervals 

T A B L E  4   Baseline to post-intervention comparison of the maximal cardiopulmonary exercise test parameters.

Parameters Baseline Post

Between groups 
comparison at baseline 
p-value

ANOVA time 
p-value/η2p

ANOVA 
time × group 
p-value/η2p

VO2peak (L/min)

VICT 2.73 ± 0.70 3.14 ± 0.72 0.497 p < 0.001/0.682 0.25/0.077

LI-HIIT 2.76 ± 0.76 3.01 ± 0.81

SI-HIIT 2.46 ± 0.63 2.81 ± 0.59

VO2peak/LM (mL/kg/min)

VICT 55.7 ± 7.5 63.3 ± 6.1 0.941 p < 0.001/0.664 0.16/0.102

LI-HIIT 55.2 ± 6.3 59.4 ± 7.2

SI-HIIT 54.7 ± 8.5 62.2 ± 7.2

VO2peak/BW (mL/kg/min)

VICT 39.3 ± 10.0 44.7 ± 9.6 0.815 p < 0.001/0.628 0.44/0.047

LI-HIIT 35.6 ± 6.5 39.3 ± 7.7

SI-HIIT 37.2 ± 7.7 42.7 ± 7.1

Wmax (Watts)

VICT 223 ± 59 264 ± 69 0.445 p < 0.001/0.800 0.24/0.082

LI-HIIT 219 ± 52 248 ± 66

SI-HIIT 197 ± 48 230 ± 56

HRmax (bpm)

VICT 190 ± 10 189 ± 8 0.805 0.261/0.037 0.28/0.072

LI-HIIT 189 ± 9 185 ± 11

SI-HIIT 192 ± 10 193 ± 10

VT1 (L/min)

VICT 1.38 ± 0.36 1.86 ± 0.53 0.549 p < 0.001/0.733 0.80/0.013

LI-HIIT 1.54 ± 0.51 1.95 ± 0.61

SI-HIIT 1.39 ± 0.35 1.84 ± 0.49

VT1/LM (mL/kg/min)

VICT 28.5 ± 5.6 37.6 ± 6.5 0.54 p < 0.001/0.752 0.51/0.039

LI-HIIT 30.9 ± 7.7 38.2 ± 7.3

SI-HIIT 30.8 ± 4.5 40.2 ± 5.6

VT1/BW (mL/kg/min)

VICT 20.0 ± 5.4 26.8 ± 7.6 0.85 p < 0.001/0.738 0.57/0.033

LI-HIIT 19.9 ± 5.5 25.2 ± 5.6

SI-HIIT 20.9 ± 3.7 27.6 ± 5.0

Note: Data presented as mean ± standard deviation. Wmax maximal output. Bold values indicates p values < 0.05.
Abbreviations: BW, body weight; LI-HIIT, long interval high intensity interval training; HRmax, maximal heart rate; LM, total lean mass; η2p, partial eta-
squared; SI-HIIT, short interval high intensity interval training; VICT, vigorous intensity continuous training; VT1, first ventilatory threshold.
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at 125%Wmax interspaced with 2 min of recovery). They 
reported that both modalities similarly improved cardi-
orespiratory fitness. This observation and present results 
support the use of SI-HIIT, as it appears to induce com-
parable gains to all-out SIT and is more adapted for the 
general population.

HIIT and SIT were shown to be equally effective 
for improving cardiorespiratory fitness (de Oliveira-
Nunes et al., 2021) and to be superior to MICT (Sultana 
et al., 2019). Since cardiorespiratory fitness improvements 
depend on training intensity (MacInnis & Gibala, 2017), 
and more specifically on the time spent at near maximal 
intensity (Buchheit & Laursen,  2013a; Midgley & Mc 
Naughton, 2006), conclusions drawn from MICT cannot 
be extrapolated to VICT. The current findings demon-
strate a comparable increase in VO2peak, Wmax, and VT1 

after the 3 training modalities, likely due to the similar 
time spent above 90% of HRmax. Consequently, VICT ap-
pears to be as effective as LI-HIIT and SI-HIIT in enhanc-
ing cardiorespiratory fitness.

4.3  |  Knee extensors torque and 
voluntary activation

Unlike cardiorespiratory and body composition adapta-
tions, neuromuscular adaptations to different HIIT were 
barely investigated, and our study is the first to assess 
MVC torque and voluntary activation changes in re-
sponse to different HIIT and a VICT. After cycling HIIT 
interventions in inactive or recreationally active subjects, 
a 7% increase in the MVC torque of the knee extensors 

T A B L E  5   Baseline to post-intervention comparison of the neuromuscular parameters.

Parameters Baseline Post

Between groups 
comparison at baseline 
p-value

ANOVA time 
p-value/η2p

ANOVA 
time × group 
p-value/η2p

Endurance time (s)

VICT 138 ± 52 153 ± 68 0.168 0.010/0.186 0.462/0.046

LI-HIIT 131 ± 40 152 ± 29

SI-HIIT 142 ± 54 148 ± 53

MVC torque (N.m)

VICT 199 ± 57 201 ± 58 0.339 0.049/0.109 0.295/0.069

LI-HIIT 175 ± 49 177 ± 45

SI-HIIT 168 ± 51 179 ± 58

Voluntary activation (%)

VICT 93 ± 4 94 ± 3 0.535 <0.001/0.283 0.858/0.009

LI-HIIT 90 ± 9 91 ± 7

SI-HIIT 91 ± 8 93 ± 6

Agonists aEMG (μV)

VICT 472 ± 164 493 ± 165 0.142 0.012/0.172 0.506/0.039

LI-HIIT 350 ± 155 406 ± 193

SI-HIIT 469 ± 185 495 ± 196

BF aEMG (μV)

VICT 97 ± 43 79 ± 37 0.421 0.026/0.142 0.431/0.050

LI-HIIT 91 ± 25 84 ± 29

SI-HIIT 81 ± 21 76 ± 25

Twitch torque (N.m)

VICT 76 ± 18 75 ± 18 0.455 0.108/0.074 0.644/0.026

LI-HIIT 71 ± 21 70 ± 19

SI-HIIT 66 ± 18 66 ± 16

Note: Data presented as mean ± standard deviation. Agonists aEMG, mean value of the average rectified electromyographic activities of the rectus femoris, 
vastus lateralis and vastus medialis during MVC. Bold values indicates p values < 0.05.
Abbreviations: BF aEMG, average rectified electromyographic activity of the biceps femoris during MVC; LI-HIIT, long interval high intensity interval training; 
MVC, maximal voluntary contraction; η2p, partial eta-squared; SI-HIIT, short interval high intensity interval training; VICT, vigorous intensity continuous 
training.
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was observed by Martinez-Valdes et al. (2017) after only 
6 sessions of SI-HIIT, Caparrós-Manosalva et al.  (2023) 
reported a 10% increase after a 12-week SI-HIIT (3 times/
week), and we observed a 3% increase after our 8-week 
HIIT and VICT interventions. In contrast, Bruseghini 
et  al.  (2019) and Lewis et  al.  (2017) did not find any 
change after 8 weeks of LI-HIIT (3 times/week) and 6 
sessions of SIT, respectively. These inconsistent isomet-
ric strength improvements in response to HIIT inter-
ventions are certainly related to the diversity of training 
protocols (duration, modality, etc.) and the suboptimal 
stimulus induced by HIIT to increase muscle strength 
compared to resistance training (Carvalho et al., 2022). 
However, differences between subjects' initial voluntary 
activation level, and thus ability to reach their maximal 
torque, could also partly explain these discrepancies. 
This is supported by present results and by our previous 
study on whole-body HIIT (Scoubeau et al., 2023), which 
shows a positive correlation between the small changes 
in MVC torque and voluntary activation and a negative 
correlation between baseline voluntary activation and 
its change after intervention, suggesting a neural contri-
bution to the torque increase that is more pronounced 
in subjects with a lower activation level at baseline. In 
contrast, resting twitch torque did not change, suggest-
ing there was no change in muscle contractile properties 
after our interventions (Alway et al., 1989).

The absence of a significant difference between the 
3 interventions could be related to the small increase in 
MVC torque, but also to the fact that, besides the absolute 
loads attained during training sessions, total mechanical 
work also influences the extent of motor unit recruit-
ment and strength improvement (Alegre et  al.,  2015). 
During VICT, maximal instantaneous training loads 
are lower compared to LI-HIIT and SI-HIIT. However, 
the constant load (~70% VO2peak) is sustained during 
a longer period, leading to a consequent total mechan-
ical work and recruitment of both type I and II motor 
units, as previously reported during cycling exercises of 
comparable intensities (Altenburg et al., 2007; Gollnick 
et al., 1974).

Although the small strength improvement observed in 
present and previous studies is encouraging, its functional 
significance in healthy subjects and other populations 
must be confirmed by further studies. The latter should 
also investigate if longer training periods could potentiate 
these strength improvements.

4.4  |  Muscle endurance

An increase in muscle endurance, quantified by 
the endurance time during a submaximal isometric 

contraction, was previously reported after whole-
body HIIT (Scoubeau et  al.,  2023) and cycling MICT 
(Martinez-Valdes et  al.,  2017; Vila-Chã et  al.,  2010). 
The present study shows that muscle endurance is 
also improved after 8 weeks of HIIT and VICT, with 
no significant difference between training modalities. 
Mechanisms that could explain the enhanced muscle 
endurance after the 3 high-intensity trainings are an 
increased resistance to inhibitory actions of III/IV mus-
cle afferents and muscle pain tolerance, improvements 
in the muscle mitochondrial content and function, and 
buffering capacity reported after high-intensity exercise 
interventions (Bishop et al., 2019).

4.5  |  Perceived exertion and intensity 
during training sessions

As previously reported during prolonged constant load 
exercise (Mikus et al., 2009; Souissi et al., 2021), cardio-
vascular drift (i.e., progressive increase in HR) occurred 
during VICT, which explains that mean and peak HR and 
time spent >90% of HRmax were comparable to LI-HIIT 
and SI-HIIT. Surprisingly, we did not observe a higher 
RPE for VICT compared to SI-HIIT as previously reported 
by Jung et al. (2014). This difference is most probably re-
lated to the higher intensity of their VICT (80% of Wmax) 
than in the present study (70% of VO2peak).

Although the session duration and the time spent be-
tween 80% and 90% of HRmax during LI-HIIT were shorter, 
RPE during sessions was higher throughout the interven-
tion compared to VICT and SI-HIIT. A higher RPE was 
previously reported during single sessions of LI-HIIT 
compared to SI-HIIT and moderate to vigorous inten-
sity continuous training (Bartlett et  al.,  2011; Kilpatrick 
et al., 2015; Naves et al., 2019; Oliveira et al., 2013), but to 
our knowledge it was never investigated during interven-
tions of a few weeks.

Perceived exertion was defined by Marcora as “the 
conscious sensation of how hard, heavy, and strenu-
ous a physical task is” (Marcora & Staiano, 2010). It is 
generated by neural process of the efferent copies from 
the central motor command and respiratory drive, and 
is indirectly modulated by afferent feedback from mus-
cles and cardiorespiratory system (Lopes et  al.,  2022; 
Pageaux, 2016). Compared to VICT or SI-HIIT, LI-HIIT 
is associated with longer bouts at intense workload, 
inducing longer periods of elevated ventilation, HR, 
higher muscle recruitment, and accumulation of fatigue 
related metabolites (Allen et al., 2008). Therefore, cen-
tral motor command and group III/IV afferents stimula-
tion should be greater during LI-HIIT and increase the 
perceived exertion.
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4.6  |  Implications

Considering the potential negative effect of elevated 
RPE on the affective response to exercise (Farias-Junior 
et  al.,  2020), one should keep in mind these differences 
in RPE when prescribing exercises, especially for in-
dividuals unaccustomed to regular physical activity 
(Lopes et  al.,  2021). Altogether, our results suggest that 
it is advisable to start with SI-HIIT and/or VICT at ~70% 
VO2peak. LI-HIIT could be introduced once subjects' ca-
pacity to cope with the physical and cognitive demands 
of exercising at higher intensities is improved (Kilpatrick 
et al., 2015), especially if time is a constraint, as shorter 
sessions of LI-HIIT appear to induce comparable cardi-
orespiratory, lean mass, and neuromuscular adaptations 
to SI-HIIT and VICT.

4.7  |  Limitations

In the present study, the necessity to fit the training ses-
sions within a ~30 min time-window with achievable 
targets for mostly inactive subjects made the volume 
equalization between groups impractical. Some argue 
this could limit the inter-group comparison in terms 
of physiological adaptations (Stern,  2022). However, 
as mentioned by Vollaard et al. (2023), it is not always 
possible and justified to equalize volume/energy ex-
penditure without running the risk of comparing pro-
tocols that are unlikely to work or not achievable for 
the target population. Another limitation that could be 
raised is the absence of monitoring of dietary and phys-
ical activity habits between exercise sessions. However, 
our subjects were reminded not to modify their physi-
cal activity and dietary habits. Regarding dietary habits, 
recording their diet may alter food intake, and bias re-
lated to self-report could happen unintentionally or to 
reduce burden (Shim et al., 2014). We therefore chose 
not to record dietary intakes. Also, it must be men-
tioned that the LI-HIIT group had a significantly higher 
BMI (see Table 1) and a tendency for higher fat mass at 
baseline. However, since fat mass remained unchanged 
and other parameters showed similar changes after the 
three interventions, this initial difference in BMI likely 
had a minimal impact on the overall outcomes. Lastly, 
our sample was relatively small and composed of inac-
tive to moderately active healthy subjects, and the in-
tervention was limited to 8 weeks. This emphasizes the 
need for further research to provide additional insights 
into the effects on health-related fitness, in larger and 
more diverse populations, and to investigate the risk/
benefit ratio and long-term effects of these training 
modalities.

5   |   CONCLUSIONS

VICT, SI-HIIT, and LI-HIIT improved cardiorespiratory 
fitness and muscle endurance, with a modest increase in 
MVC torque, voluntary activation, and lean mass. Despite 
a shorter session duration for LI-HIIT, the similar time 
spent at near maximal intensity during the 3 interven-
tions probably explains the lack of significant differences 
in training-related improvements. Based on the assess-
ment of RPE during training sessions, SI-HIIT and VICT 
were perceived as less strenuous than LI-HIIT, suggest-
ing they could be better tolerated by subjects unaccus-
tomed to vigorous exercise. In this context, proposing 
SI-HIIT, VICT, and LI-HIIT stepwise, or as complemen-
tary options, based on previous experience of physical ac-
tivity, preferences, and time constraints could positively 
influence affective response to exercise, increase inter-
vention diversity, and thereby promote motivation and 
adherence.
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