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ABSTRACT
Enhancing athletic performance through the manipulation of nutritional intake has ancient roots, with early guidance from 
“philosophical giants” like Hippocrates, who describes the balance between diet and exercise. Modern sports nutrition emerged 
in the 20th century, with research identifying carbohydrate (CHO) intake as beneficial for endurance. Studies like Gordon's in 
the 1920s linked blood glucose levels to marathon performance, while Cade's research in the 1960s on fluid and electrolyte in-
take led to the founding of Gatorade and the shift toward drinking during exercise to allegedly prevent dehydration and improve 
sporting performance. Today, sports nutrition is in a “holding pattern” after significant developments in the 1980s, 1990s, and the 
2000s. A new era will involve personalized nutrition, but this development will require a game-changing injection of momentum, 
recognizing that athletes' responses to nutrition interventions vary widely. New technologies will also need to be developed and 
perfected, including wearables for real-time biometric monitoring (e.g., heart rate variability, glucose, and sweat composition 
and rate), which offer potential for tailored nutrition (i.e., diet and hydration) strategies. Applications of genetic and multi-omics 
technologies (like genomics, transcriptomics, metabolomics, proteomics, and epigenomics) are needed to unlock the potential of 
personalized sports nutrition by analyzing individual responses to factors such as sleep, nutrition, and exercise. The future lies 
in fast integration of all available data using next-generation bioinformatics and AI to generate personalized recommendations, 
with an emphasis on empirical evidence rather than solely commercial interests. As technology matures, sports (and exercise) 
nutrition will continue refining its practices but will need a paradigm shift to deliver precise interventions that may offer athletes 
the crucial edge needed to maximize performance while promoting short-term and long-term health.

The enhancement of human exercise performance and health 
through the manipulation of nutritional intake is an age-old 
pursuit, with texts describing the range of opinions regarding 
the optimum diets for exercise more than 2000 years ago (e.g., 
[1]) and as follows:

Positive health requires a knowledge of man's primary 
constitution and of the powers of various foods, both 
those natural to them and those resulting from human 

skill. But eating alone is not enough for health. There 
must also be exercise, of which the effects must likewise 
be known. The combination of these two things makes 
regimen, when proper attention is given to the season 
of the year, the changes of the wind, the age of the 
individual, and the situation of his home. If there is any 
deficiency in food or exercise, the body will fall sick. 

Hippocrates c. 460 – c. 370 BC

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is 

properly cited.

© 2025 The Author(s). Scandinavian Journal of Medicine & Science In Sports published by John Wiley & Sons Ltd.

https://doi.org/10.1111/sms.70044
https://doi.org/10.1111/sms.70044
mailto:
https://orcid.org/0000-0001-6210-2449
mailto:ypitsiladis@hkbu.edu.hk
http://creativecommons.org/licenses/by/4.0/


2 of 8 Scandinavian Journal of Medicine & Science in Sports, 2025

Despite the prolonged interest in this field, the development of 
impactful and evidence-based nutritional practice during sport 
and exercise remains aspirational rather than reality. The mod-
ern discipline of sports nutrition has advanced significantly 
since the days where athletes would use wine, egg whites and 
strychnine (a rat poison that could be used as a nerve stimulant) 
to improve marathon performance [2] are long gone. When ex-
amining the historical progression of sports nutrition from an-
cient times to the present, its cyclical nature becomes evident. 
As highlighted by Hippocrates, early approaches emphasized 
individualization (e.g., “… knowledge of man's primary consti-
tution …”), focusing on the unique physiological needs of each 
athlete. Over time, this perspective shifted toward identifying 
performance-enhancing nutritional interventions that could 
be broadly applied across athletic populations. This shift ne-
cessitated the use of interventional studies and group-based 
analyses to validate findings and establish standardized dietary 
recommendations. However, in recent years, there has been a 
resurgence of interest in personalized nutrition, driven by ad-
vancements in wearable technology, biomarker analysis, and 
genetic profiling, enabling more data-driven, individualized 
strategies for optimizing athletic performance.

1   |   A “Recent” Sports Nutrition Revelation: 
Carbohydrate and Hydration

In the 1920s, studies into carbohydrate (CHO) intake during ex-
ercise began in earnest. For example, Gordon et al. [3], noted the 
association between blood glucose and marathon performance 
and condition of the runners at the finish. These authors con-
cluded that the “adequate ingestion of CHO before and during 
any prolonged and vigorous muscular effort might be of con-
siderable benefit in preventing the hypoglycaemia and the ac-
companying development of symptoms of exhaustion.” Another 
classic study by Buskirk and Beetham [4] that studied runners 
competing in the Boston Marathon and Brighton Road Race 
(Denver, Colorado, USA) and reported 2.5%–7.4% weight loss in 
the marathon runners, yet performance decrement did not seem 
to occur and running pace was maintained essentially constant 
by each runner until the end of the race. These early pioneering 
studies for some reason were omitted in subsequent delibera-
tions on drinking recommendations.

Despite the potential and the rapidly developing scientific inter-
est in exercise physiology in the early part of the 20th century [5], 
it was not until the 1960s and 1970s that the first commercial-
ized CHO beverage for sports was developed and studied [6]. In 
the study that gave rise to the well-known company “Gatorade,” 
Cade et al. [6], studied a group of athletes completing a 7 mile run 
and found that ingestion of a saline-glucose solution decreased 
the likelihood of heatstroke in a hot environment. This study, 
and others (i.e., [7]), established the dogma of avoiding drinking 
during sport and exercise prior to 1970, to drink as much as pos-
sible in order to mitigate dehydration and prevent heat stroke. 
It is now well accepted that metabolic rate is the main driver of 
elevated body temperature during exercise and that sweating is 
regulated independent of skin blood flow and so independent 
to the cardiovascular response to exercise. For example, Ladell 
et  al. [8], demonstrated that abstention from water had no ef-
fect on sweat rate, until water deficits of more than 2.5 L had 

been incurred. The more recently accepted view for athletes to 
drink to individual needs (such as “drinking to thirst” [9]) but 
the concept that dehydration > 2% body mass degrades exercise 
performance [10] remains popular even though this concept is 
not supported by ecologically valid studies [4, 11].

There remains significant skepticism about the validity of the re-
search underpinning the claims the manufacturers make about 
the effectiveness of some of their products, partly due to sports 
nutrition being poorly regulated, and research and development 
being sponsored primarily by the sports nutrition industry [12]. 
A significant number of studies investigating supplements have 
been funded by the industry (the authors of this manuscript in-
cluded, e.g., [13]), and while receiving funding from industry to 
investigate products does not guarantee positive results, read-
ers may perceive the authors to be biased. Many studies suffer 
from low ecological validity, performing physiological testing in 
laboratory conditions and often including participants with de-
mographics that do not reflect the target population. For exam-
ple, it is unclear what the performance implications are for elite 
footballers of the 33% improvement in endurance running ca-
pacity during prolonged intermittent exercise following drink-
ing a CHO-electrolyte solution versus a control beverage (8.9 
± 1.5 min vs. 6.7 ± 1.0 min, respectively; p < 0.05) (mean ± S.E.M, 
[14]). The field of sport science is also often criticized for inad-
equate statistical/methodological rigor [15] and publication 
bias [16].

Despite the many challenges in the evolving field of sports nu-
trition, significant progress has been made in understanding 
CHO ingestion, including optimizing its dose [17], form [18], and 
content [19] in an athlete's diet and sports drinks. It is import-
ant to recognize the multiple human factors that influence the 
formulation of an optimal CHO intake strategy, such as body 
mass, metabolic preference (fat vs. CHO oxidation), and gastric 
emptying rates. These factors also apply to other macronutrients 
like protein and supplements like creatine. Advancements in 
metabolic testing, wearable technology, and biomarker analysis 
are improving the ability to assess an individual's physiological 
responses to nutrition with increasing precision. While these 
tools offer potential for tailoring nutritional strategies, their full 
impact on elite sports is yet to be realised. Factors such as data 
reliability, practical application in real-world training environ-
ments, and the need for continuous monitoring mean that truly 
individualized approaches remain a work in progress. However, 
as research and technology evolve, the feasibility of implement-
ing highly personalized nutrition strategies at the highest level 
of sport is likely to improve over time; this will require a con-
certed effort by the field of sports nutrition and a modernization 
seen in other scientific disciplines (e.g., cancer research).

While CHO has been a popular macronutrient to investigate, 
with multiple consensus statements made (e.g., [20, 21]), there 
has also been significant interest in identifying, evaluating, and 
promoting the use of other micronutrients that may impact exer-
cise performance and health. The latest International Olympic 
Committee consensus statement on nutritional supplementation 
for elite athletes describes and cautiously supports the use of 
caffeine, creatine, nitrate, beta-Alanine, and sodium bicarbon-
ate for their potential to improve sport performance, under spe-
cific circumstances [22] and for the replenishment of micro- and 
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macronutrients. There have been a multitude of sport nutrition 
“innovations” with varying scientific support, over the years 
from CHO beverages with gel-forming properties  [23], hydro-
gels [24], methods of inducing hyperhydration [25], various sup-
plements with antioxidant properties [26, 27] and slow nutrient 
release methods [28]. Greater efforts are now needed to generate 
new sports nutrition innovations while also further enhancing 
innovations that have already shown promise of efficacy.

2   |   The Average Athlete

There is no such thing as an “average” athlete and it is well-known 
in the field of sports science and sports nutrition that “one size 
does not fit all.” For example, when acclimating members of the 
Ethiopian Olympic team (i.e., middle- and long-distance run-
ners) for the hot weather expected at the 2008 Beijing Olympics, 
the same acclimation strategy resulted in sweat rates ranging 
from 0.8 L/min to 3.6 L/min (unpublished data). This observa-
tion of dramatically different sweat rate in a fairly homogenous 
group of very elite runners in terms of training and performance 
status, and tribal ancestry, illustrates the inadequacy of the “av-
erage” intervention, or the same intervention for all. Similarly, 
research in sports nutrition has historically been skewed to-
ward male participants. This underrepresentation persists de-
spite the increasing participation of women in sports, the equal 
representation of female and male athletes in the recent Paris 
summer Olympic Games [29] and some 45% female athletes in 
the Paralympic Games [30], and the recognition of unique nu-
tritional and physiological requirements for the female athletes 
[31]. The effectiveness of a “one-size-fits-all” approach in sports 
science, medicine, and nutrition has been widely debated, with 
critics questioning its ecological validity and applicability to di-
verse athletic populations. Traditional nutrition guidelines are 
often based on controlled laboratory studies that fail to repli-
cate real-world competition settings. For example, there has 
been a debate ongoing for years on the importance of prevent-
ing a ~ 2% body mass loss due to dehydration during prolonged 
endurance events [32]. Here, the prevailing view is that there 
are performance-limiting changes in response to significant 
dehydration [33, 34] but the accenting view is that such stud-
ies [33, 34], suffer from fundamental flaws in their design im-
pacting ecological validity. Specifically, participants, most often 
non-elite athletes, are subjected to dehydration protocols that 
do not accurately reflect real-life competition scenarios of elite 
athletes and significantly hinders their laboratory performance. 
Furthermore, when reviewing the physiological responses to ex-
ercise during competition, significant rates of dehydration are 
often observed, often by the fastest runners [4, 7, 11]. Athletes 
will differ in sweat rate, sodium loss, fuel oxidation, and energy 
demands, making standardized recommendations insufficient 
for optimizing performance. Debates such as these have encour-
aged the discussion about personalized nutrition [35] for some 
time; however, only recently has wearable technology advanced 
sufficiently to allow the individual response to a sports nutrition 
intervention to be properly observed. Promising solutions such 
as real-time monitoring of hydration status, sweat composition, 
glucose levels, and core temperature. Devices such as continu-
ous CGMs and sweat analysis patches provide individualized 
data, enabling athletes and coaches to tailor hydration and fu-
elling strategies dynamically. By integrating such data-driven 

approaches, sports nutrition can shift toward more personal-
ized, ecologically valid recommendations, enhancing both per-
formance and recovery.

The sports wearables market size was valued at USD 1.75 bil-
lion in 2023 and is anticipated to grow at a CAGR (Compound 
Annual Growth Rate, the rate at which an investment, revenue, 
or any other metric grows annually over a specified period) of 
over 15% between 2024 and 2032 [36]. This surge in health and 
wellness awareness is fueling a growing appetite for fitness 
monitoring devices and wearables. These are likely to become 
a routine part of field and real-life testing in the near future. 
Not only can developments be made in wearable technology to 
improve the training of athletes, but also during competition as 
well. For example, it is now possible to meaningfully measure 
sweat composition and sweat rate in real-time [37], and this in-
formation could be used to inform in-race nutritional intake of 
fluids, enhancing the effectiveness of the hydration program.

Numerous wearable technologies are currently in development 
and have been piloted in competitions [38, 39] (Figure  1). As 
we have highlighted [38], an entire “ecosystem” of technology 
is currently being used to monitor athletes' performance and 
health metrics. The range of available technologies continues 
to expand, including ingestible core temperature pills, wearable 
sweat-monitoring patches, heart rate monitors, and foot-worn 
inertial sensors. Building on this, we previously discussed the 
rapid advancements in sports technology and the challenges of 
ensuring these innovations are both effective and ethically ap-
plied [39]. We emphasized the importance of striking a balance 
between leveraging cutting-edge tools and maintaining fair 
competition, athlete well-being, and data privacy. Specifically, 
we highlight the increasing role of artificial intelligence (AI), 
real-time data analytics, and digital biomarkers in refining ath-
lete monitoring, particularly in high-performance environments 
[40]. A particularly promising application of these emerging 
technologies is in the development of personalized nutritional 
strategies. Continuous glucose monitors (CGMs) allow real-time 
tracking of blood glucose fluctuations, providing insights into 
an athlete's energy availability, metabolic flexibility, and fueling 
needs during training and competition. This data can inform 
CHO intake strategies, ensuring optimal glucose levels are main-
tained to prevent fatigue and enhance performance. Similarly, 
wearable sweat-monitoring patches and ingestible electronic 
pills can provide real-time data on hydration status, sweat rate, 
and electrolyte composition. By analyzing an athlete's sweat 
profile—including sodium, potassium, and fluid loss—practi-
tioners can tailor hydration strategies to prevent dehydration, 
optimize electrolyte balance, and reduce the risk of heat-related 
performance declines. Ingestible thermometric capsules fur-
ther contribute by continuously monitoring core temperature, 
helping refine cooling strategies and fluid intake recommen-
dations in extreme conditions. Despite these advancements, we 
caution that technology alone is not a guaranteed pathway to 
improved performance [39]. The practical application of these 
tools depends on accurate data interpretation, integration with 
individualized training and recovery strategies, and adherence 
to regulatory and ethical standards. As the field continues to 
evolve, researchers and practitioners must navigate these com-
plexities to ensure that emerging technologies enhance, rather 
than disrupt, elite sports. Nonetheless, the ability to collect and 
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apply real-time physiological data marks a significant step to-
ward a more precise and individualized approach to sports nu-
trition, hydration, and performance optimization.

A crucial question to consider is what new innovations are 
needed for personalized nutrition to become a reality and offer 
more benefits compared to the “one-size fits all” paradigm? 
Thankfully, further advancements in technology will help us 
understand how individuals respond to sports nutrition inter-
ventions. For example, to determine the athlete's optimal CHO 
and fluid recommendations during exercise, we need to consider 
factors like the energy demands of the activity, cardiovascular 
strain, metabolite levels, sweat loss, impact of environment, and 
numerous other factors. Additionally, development of bespoke 
fit for purpose technology will allow long-term monitoring of 
athletes, without the burden of extensive human labour or time 
costs. To gauge how an individual reacts to different nutritional 
strategies, repeated testing on the same person in similar and 
also widely differing environmental conditions will be neces-
sary. The complexity of the sport and the performance environ-
ment (i.e., training, minor event, major event) may require more 
repetitions to accurately assess the impact of an intervention. 
It is also vital to track athlete adherence to the recommended 
nutritional plans. This data can help evaluate educational and 

behavioral change strategies, paving the way for more person-
alized approaches.

3   |   Genetics-Based Personalization: 
A Long-Awaited Future

Applications in personalized sports nutrition is set to gain signifi-
cant momentum in the near future, especially with advancements 
in genomic technologies, like genetic sequencing. It is even sug-
gested that the influence of DNA sequencing could rival that of 
the microscope [41]. With the rapid advance in the development 
of omics technologies, such as next-generation sequencing [42], 
there is a clear route to develop truly personalized nutrition rec-
ommendations. The field of sports nutrition and sport science in 
general is encouraged to leverage these powerful technologies and 
stay updated with rapid advancements to enhance the chances of 
discovering optimal individualized solutions. These technologies 
are already being used not only in many areas of biomedical re-
search and precision medicine, for conditions like cancer, stroke, 
and Alzheimer's disease, but also more recently in anti-doping re-
search [43], offering valuable insights that can be applied to sports 
nutrition. There exists a growing evidence base describing the tran-
scriptomic, metabolomic, and proteomic responses to nutritional 

FIGURE 1    |    Real-time biometric and environmental monitoring system used in Paris 2024. AI, Artificial intelligence; API, Application 
Programming Interface; BLE, Bluetooth Low Energy; IMU, An inertial measurement unit.
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intake/manipulation [44] and practical examples of using metab-
olomics to better understand the response to exercise in a clinical 
setting. For example, Hanaoka et al. [45], demonstrated the use of 
metabolomics to characterize the response to exercise in individ-
uals with cerebral palsy, providing new insights for nutritionists 
to adapt and improve nutritional guidelines for patients. Our re-
search group has uniquely applied both transcriptomics [46, 47] 
and metabolomics [48] to the same study and identified potential 
molecular and metabolomic markers of doping. We are now in the 
process of combining the analysis with the other omics (including 
proteomics) to uncover potentially stronger predictive outcomes. 
This poly-omics (or “integrative omics”) approach is destined to 
become common practice in the future, especially if personalized 
approaches are to achieve greater clinical utility.

Today, however, the use of genetic testing in sports nutrition and 
science is still in its infancy. The scientific consensus indicates 
that genetic testing in sports science and sports nutrition currently 
has limited clinical utility and should not be presently marketed 
[49, 50]. This stands in stark contrast to the growing number 
of companies promoting genetic testing with unsubstantiated 
claims [51, 52]. The global genetic testing market size was valued 
at $15.5 billion in 2022 and is projected to reach $40.9 billion by 
2032, growing at a CAGR of 10.2% from 2023 to 2032 [53]. What 
is needed is a renewed focus on the traditional, laborious, and 
costly laboratory experiment, as there is only so much one can 
learn from meta-analyses and non-laboratory-generated big data. 
Many research groups worldwide are increasingly relying on non-
laboratory-controlled data, overlooking the fact that an abundance 
of poor-quality data will inevitably generate poor outcomes.

A significant evolution is also necessary within the emerging 
field of “phenomics” (the detailed study of the phenotype, e.g., 
Figure 2), that models health- and fitness-related variables to-
gether in a complex system, profiling and modeling an athlete's 

performance [54], in order to deliver personalized nutrition with 
greater clinical utility. While genetic testing has long been her-
alded as a revolutionary tool in sports science and medicine, its 
full potential remains unrealized due to significant barriers in 
data acquisition, translation, and practical application [50, 55]. A 
major challenge lies in the volume and complexity of data gener-
ated by OMICS technologies (genomics, transcriptomics, metab-
olomics, and proteomics) which require advanced bioinformatics 
for interpretation. Despite rapid advancements in sequencing 
technologies and biomarker discovery, the integration of these 
findings into actionable sports nutrition strategies remains slow 
and inconsistent. For instance, metabolomics can assess how an 
athlete metabolizes carbohydrates and fats during exercise, en-
abling personalized fueling strategies. However, the challenge 
lies in translating this multidimensional data into practical di-
etary and training recommendations that athletes and coaches 
can easily implement. Currently, the field lacks a standardized, 
automated system to integrate and interpret OMICS data in a 
way that is both scientifically rigorous and user-friendly. AI and 
machine learning present a promising solution by enabling the 
automated processing of vast datasets, identifying meaningful 
patterns, and generating individualized recommendations. AI-
driven platforms, digital twins, and predictive modeling could 
bridge the gap between raw genetic data and real-world appli-
cation, offering personalized nutrition and recovery strategies 
based on real-time physiological needs. Despite these promis-
ing advancements, practical implementation remains limited by 
factors such as data accuracy, regulatory concerns, and acces-
sibility. As research progresses, the key to unlocking the true 
potential of genetic and OMICS-based sports nutrition will be 
more ambitious large studies involving multicenter collabora-
tions so well-phenotyped samples can be exploited combined 
with the development of AI-driven bioinformatics platforms 
that simplify data interpretation and make precision nutrition a 
feasible reality for athletes at all levels.

FIGURE 2    |    An example of a comprehensive study of the phenotype—“phenomics.”
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In summary, the limited impact of genomics and OMICS in gen-
eral in the field of sport science, medicine, and nutrition, as it re-
lates particularly to elite athletes thus far, reflects the early stage 
of research and methodological challenges rather than a lack of 
potential. The complexity of human performance traits, small 
sample sizes, and a lack of understanding of gene–environment 
interactions have hindered progress. However, genetic testing 
shows promise in areas like injury risk assessment and person-
alized training. As research advances, polygenic risk scores and 
AI-driven genomic analysis may offer more accurate insights. 
While genetic findings in the general population may not di-
rectly translate to elite athletes, sports-specific genomic studies 
hold significant potential.

4   |   Artificial Intelligence and Nutrition

Development of such personalized nutrition will require the 
application of advanced bioinformatics, including machine 
learning and AI, to integrate the various layers of biological 
data for a better understanding of functional outcomes, along-
side real-time assessment of the “phenome” using 5G and 
6G technologies, sensors, devices, and applications [40]. 6G 
(Sixth-Generation Wireless Technology) is the future of mobile 
networks, expected to succeed 5G around 2030, promises to sig-
nificantly impact personalized sports nutrition, sports science, 
and sports medicine, particularly through its ultrahigh-speed 
connectivity, near-zero latency, and AI integration. With speeds 
up to 1 Tbps and ultralow latency, 6G will enable real-time data 
transmission from wearable devices such as continuous CGMs, 
sweat analysis patches, and other omics-based sensors. These 
devices will offer immediate insights into an athlete's physio-
logical state, such as hydration, glucose levels, and metabolic 
responses, allowing for instant adjustments in nutrition and hy-
dration strategies. Currently, 3G and 4G networks struggle to 
provide the necessary bandwidth and low latency for seamless, 
real-time data exchange between devices, often leading to delays 
in data transmission and limiting the ability to act on informa-
tion instantly. In contrast, 6G will enable AI-driven networks 
that enhance data processing and interpretation, allowing for 
the seamless integration of omics data into personalized nutri-
tion prescriptions. Through AI and machine learning, 6G will 
support the creation of tailored nutrition plans based on indi-
vidual biomarker data, improving performance and recovery. 
Moreover, 6G's global connectivity, even in remote areas, and 
its potential for autonomous systems will ensure that athletes 
worldwide have access to cutting-edge sports science tools and 
personalized recommendations, advancing both performance 
and health outcomes in sports. With the ever-decreasing cost of 
omics technology and increasing speed at which results can be 
reviewed, the ambition to see omics technologies routinely ap-
plied to sports medicine and sports nutrition settings may soon 
be realized. Notably, researchers at Stanford University, also 
working in sports genetics, set the first Guinness World Record 
for the fastest DNA sequencing diagnostic application, which 
was to sequence a human genome and provide a medical diag-
nosis in just over 7 h [56]. Such rapid “sample to result” solutions 
are now becoming more widely available.

A limiting step in this grand vision may be the speed of data 
analysis and interpretation of complex omics data. Here, the 

integration of AI may aid the athlete's support team to identify 
trends in data and provide tailored advice to the athlete. The use 
of AI to influence the decision-making of athletes and support 
staff is beginning to make significant strides. For example, AI is 
making significant advancements in sports injury monitoring 
pathways and enhancing clinicians' ability to monitor and treat 
injuries effectively [57]. Further research is needed to better un-
derstand underlying mechanisms, individual variation, and AI 
models in order to create personalized nutrition recommenda-
tions based also on multi-omics data [58]. Identifying relevant 
noninvasive biomarkers is appealing to athletes and practi-
tioners due to the speed and frequency of data collection com-
pared to traditional blood tests or questionnaires. However, it is 
essential that these technologies are implemented ethically and 
within established national and international regulatory frame-
works, which require further development.

5   |   Conclusion

Athletes relentlessly pursue excellence, risking their bodies for 
fractions of a second in performance benefit. While the relative 
impact of nutritional manipulation may only be minor, it might 
be the fraction of a second or any worthwhile performance ad-
vantage that separates winning from losing. The true impact on 
the performance and health of athletes of truly personalized nu-
trition over average advice remains to be determined and will re-
quire the paradigm shift in the field of sports nutrition advocated 
here. In this manuscript, the focus has been almost entirely on 
CHO and fluids, although the important advances in other prom-
inent areas of sports nutrition, such as protein manipulation are 
equally relevant and could have also been used instead to make 
the same arguments for the necessary steps needed to achieve 
personalized nutrition with clinical utility. Furthermore, in our 
manuscript, we often chose individual endurance sports such 
as marathon running as an example to highlight advancements 
and the need for further advancements in sports nutrition, as it 
is a well-studied and established model. This choice strengthens 
our argument by emphasizing the challenges of individualizing 
nutrition, even in the most researched areas, and underscores 
the broader need for change in all sports. While the focus is on 
marathon running, the principles discussed—such as real-time 
data, omics, and AI-driven strategies—apply to other sports like 
team sports, sprinting, and strength-based events, making the 
discussion relevant across diverse disciplines.
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